
Automatic Goal-Conditioned

Reinforcement Learning using

Learned Distances and Automatic

Curriculum Generation

Srinivas Venkattaramanujam

Computer Science
McGill University, Montreal

November 30, 2020

A thesis submitted to McGill University in partial fulfilment of the requirements of

the degree of Master of Science. c©Srinivas Venkattaramanujam; November 30, 2020.

i

Acknowledgements

Many thanks to Doina for her continuous support, guidance and encourage-

ment. She gave me the freedom to set my goals and provided me with valuable

insights whenever I was stuck. I am grateful for the opportunity she has pro-

vided me with. My sincere thanks to my collaborators Eric, Thang and Riashat.

I have learned a lot from each of them. Special thanks to Maxime Wabartha

for his kind help in translating the abstract. I am very grateful to my parents,

sister and friends for their continuous encouragement and support.

ii

Abstract

Representation learning for reinforcement learning is still an open problem.

Prior methods have developed a variety of objectives for representation learning

satisfying certain desired properties. In this thesis, we propose an approach to

learn embeddings that is suitable for goal-conditioned reinforcement learning.

We learn an embedding space with the property that the distance between the

states in the embedding space is proportional to square root of the average com-

mute time distance between those states under a fixed policy. Fouss, Pirotte,

and Saerens, 2005 show the existence of this embedding space and its connec-

tion to the unnormalized Laplacian. Our approach is motivated as providing an

approximation to this embedding space using metric Multi-Dimensional Scal-

ing (MDS). Our experiments demonstrate that this learned embedding space

can be used learn a task specific distance function required for goal-conditioned

policies to determine whether the specified goal has been achieved. A goal is

considered achieved when the agent is within an ε-ball centered on the goal. As

a secondary contribution, we propose an approach to automatically generate a

curriculum of goals without using domain knowledge. The two proposed meth-

ods, used in conjunction, remove almost all of the domain knowledge required to

design goal-conditioned reinforcement learning agents that learn useful behavior

on their own.

iii

Résumé

L’apprentissage de représentations pour l’apprentissage par renforcement

est aujourd’hui une question ouverte. Certaines méthodes ont développé une

variété d’objectifs pour l’apprentissage de représentations satisfaisant certaines

propriétés désirées. Dans cette thèse, nous proposons une approche visant à

apprendre des structures utilisables par l’apprentissage par renforcement con-

ditionné par un but. Nous apprenons un espace de structures ayant la propriété

que la distance entre les états de l’espace de structures est proportionnelle à la

racine carrée du temps de trajet moyen entre ces états, en suivant une stratégie

fixe. Fouss, Pirotte, and Saerens, 2005 montre l’existence de cet espace de struc-

tures et sa connexion au Laplace non normalisé. Notre approche est motivée

par l’approximation de cet espace de structures grâce à la métrique MDS. Nos

expériences démontrent que cet espace de structures appris peut être utilisé

pour apprendre une distance spécifique pour chaque tâche, ce qui est requis

par les stratégies conditionnées par un but, afin de déterminer si le but spé-

cifique a été atteint. Un but est considéré atteint quand l’agent se situe dans

une boule-epsilon centrée sur le but. Nous proposons également comme contri-

bution secondaire une approche pour automatiquement générer un curriculum

de buts sans utiliser de connaissances spécifiques au domaine d’apprentissage.

Les deux méthodes proposées utilisées ensemble permettent de se passer de

presque l’entièreté des connaissances spécifiques au domaine d’apprentissage

qui sont requises pour concevoir des agents d’apprentissage par renforcement

conditionné par un but qui apprennent d’eux-mêmes des comportements utiles.

iv

Contribution of Authors

• Chapters 1-5 provide the requisite background and is new material written for

this thesis.

• Chapters 6-9 are joint work with my co-authors Eric Crawford, Thang Doan

and Doina Precup (Venkattaramanujam, Crawford, et al., 2019). I was the

main contributor to both the algorithmic ideas and the implementation of the

code for the experiments.

• The buffer proposed in section 8.3 is based on the workshop paper (Venkattara-

manujam, Islam, and Precup, 2019).

• The code for our experiments is based on the open-source code for (Florensa,

Held, Wulfmeier, et al., 2017) and (Florensa, Held, Geng, et al., 2018).

Contents

Contents v

1 Introduction 1

2 Markov Chains 4

3 Reinforcement Learning 8

3.1 Preliminary Definitions . 8

3.2 Dynamic Programming . 11

3.2.1 Policy Evaluation . 12

3.2.2 Policy Improvement Theorem 13

3.2.3 Policy Iteration . 14

3.2.4 Value Iteration . 15

3.3 Reinforcement Learning . 15

3.3.1 Monte Carlo . 16

3.3.2 Temporal Difference Learning 19

3.3.3 Policy Gradients . 21

3.4 Goal Conditioned Reinforcement Learning 25

4 Graphs 27

4.1 Preliminary definitions . 28

v

CONTENTS vi

4.1.1 Directed Graphs . 28

4.1.2 Undirected Graphs . 29

4.1.3 Weighted Graphs . 30

4.2 Graph Laplacian . 31

5 Dimensionality Reduction 34

5.1 Multidimensional Scaling . 34

5.1.1 Metric MDS . 35

5.1.2 Classical MDS . 38

5.2 Graph Drawing . 40

5.2.1 Stress Minimization . 41

5.2.2 Spectral Graph Drawing . 41

5.2.3 Comparison of stress minimization and spectral graph drawing 45

5.3 Principal Component Analysis . 47

5.3.1 Equivalence of PCA and cMDS 47

5.3.2 Spectral Graph Drawing and PCA Whitening 48

6 Laplacian in Reinforcement Learning 50

7 State Embeddings 52

7.1 Proposed Objective Function . 52

7.2 Existence of the Embedding Space 54

7.3 Approximation of the Embedding Space 56

8 Automatic Curriculum Generation 59

8.1 Related Work . 59

8.2 Goal Generation with Action Noise 61

8.3 Goal Buffer . 62

9 Experiments 63

CONTENTS vii

9.1 Control Tasks . 64

9.1.1 XY Goal Space . 65

9.1.2 Full State Space as Goal Space 65

9.1.3 Hyperparameters . 68

9.2 Expanding ε-sphere . 69

9.3 Pixel Inputs . 71

9.4 Comparison of Spectral Embeddings and Scaled Spectral Embeddings 76

9.5 Effect of q . 81

9.6 Effect of dimension size . 83

9.7 Generating Goals Using Action Noise 86

10 Conclusion and future work 88

Bibliography 90

1
Introduction

Deep Reinforcement Learning (DeepRL) has seen tremendous success in a variety of

tasks such as playing Atari games (Mnih et al., 2015), solving the games of Go and

Chess (Silver, Huang, et al., 2016; Silver, Hubert, et al., 2018) and robotic control

(Lillicrap et al., 2016; Schulman et al., 2015). Despite these successes, DeepRL is far

from solved and it is an active area of research. In this thesis we concern ourselves with

the problems arising in the sparse reward setting. There exists no formal definition

for what constitutes a sparse reward setting but intuitively it can be understood as

the situation where the agent is provided with a feedback only after a long sequence

of actions and most sequences lead to the same feedback. Sparse reward problems are

typically solved by augmenting the original task with an auxiliary task or by breaking

down the original task into simpler tasks. The former approach is known as reward

shaping and the latter approach is known as options (Sutton, Precup, and Singh,

1999).

Reward shaping is not a straightforward approach and has been shown to cause

spurious behavior in the original task. The foremost reason to use sparse rewards

in the original task is because designing a dense reward function is tedious. Reward

shaping falls into the same trap. Ng, Harada, and Russell (1999) proved that the

optimal policy for the original task remains invariant under augmentation only for a

specific class of shaped reward functions which they called potential-based shaping

1

CHAPTER 1. INTRODUCTION 2

functions. Potential-based shaping functions are based on the state sequence and

are agnostic to the actions taken in the states. It is therefore intuitive that they do

not modify the optimal policy. Despite its theoretical restrictions, reward shaping

has been empirically shown to aid exploration in sparse reward problems (Bellemare

et al., 2016; Burda, Edwards, Pathak, et al., 2019; Burda, Edwards, Storkey, et al.,

2019). A related application of augmented reward functions is to aid representation

learning (Jaderberg et al., 2017).

The reinforcement learning task can be alternatively characterized in terms of

achieving goals (Kaelbling, 1993). This characterization is an instance of a hierarchical

reinforcement learning (Sutton, Precup, and Singh, 1999) and enjoys the benefit of

being compatible with curriculum learning - the technique of solving a task by solving

a sequence sub-tasks of progressively increasing difficulty. Curriculum learning was

introduced in the supervised-learning setting using hand-designed curriculum (Bengio

et al., 2009). Hand-designing a curriculum is cumbersome and approaches to automate

this process have been proposed, for example by modelling task sequencing as a multi-

armed bandit in the supervised-learning setting (Graves et al., 2017) and as an MDP

in reinforcement learning (Narvekar, Sinapov, and Stone, 2017). Florensa, Held,

Geng, et al. (2018) proposes an approach that uses a generative adversarial network

(Goodfellow et al., 2014) to generate goals for reinforcement learning agents. This

approach was shown to be better than alternative approaches proposed in (Sukhbaatar

et al., 2018) and (Baranes and Oudeyer, 2013).

The previous approaches to goal generation in reinforcement learning use prior

domain knowledge to design the goal space. For tasks of practical importance, it is

nontrivial to hand design the goal space. As a result, several recent works propose

different approaches to learn the goal space without using prior knowledge. Nair et al.

(2018) learn a goal space using a variational autoencoder (VAE) (Kingma and Welling,

2014). The goal space learned using VAE does not capture the task dynamics; it

merely captures similarity in the input space, visual similarity for instance. Nachum

CHAPTER 1. INTRODUCTION 3

et al. (2019) learn a goal space that captures task dynamics and is optimal for a

specific assumption on the dynamics model. Closely related to the approach we will

propose is Wu, Tucker, and Nachum, 2019, in which the goal space is obtained using

the eigenvectors of the Laplacian matrix.

The primary contribution of this thesis is to develop an approach to automatically

learn the goal space that captures the task dynamics. The learned embedding space

approximates the property that the distance between two states in the embedding

space is proportional to the square root of the average commute time between these

states in the Markov chain induced by the policy used to collect the samples. This

embedding space is guaranteed to exist under some assumptions as shown in (Fouss,

Pirotte, and Saerens, 2005). Computing this embedding space requires quantities

that are not available in the reinforcement learning setting, such as the matrix of

pair-wise distances or the pseudo-inverse of the Laplacian of the state connectivity

graph. Hence, we propose an approach to approximate this embedding space. Our

experiments show that this embedding space is suitable for goal-conditioned reinforce-

ment learning tasks. We use the learned embeddings to define the ε-ball around the

goals which is used to determine whether the agent has achieved its goal. The embed-

ding space is trained online, in conjunction with the training of the goal-conditioned

policy.

As a secondary contribution, we propose an approach to generate goals by applying

random actions at the end of the episode to collect a set of new candidate goals. We

show that this goal generation approach is on par with (Florensa, Held, Geng, et

al., 2018). Notably, unlike prior work, our approach does not require any domain

knowledge. The two proposed contributions blend together to give an approach to

train goal reaching agents that can automatically pick their next goals, in a self-driven

and domain-agnostic fashion.

2
Markov Chains

This chapter summarizes the main definitions and results from the theory of Markov

chains which are useful for understanding our work. The presentation is based

on (Brémaud, 1999)

A sequence of random variables (Xn)n≥0 with values in a set Ω is called a discrete-

time stochastic process with the state space Ω.

A discrete-time stochastic process with finite state space Ω is called a discrete-time

finite Markov Chain with state space Ω and transition matrix P if for all n ≥ 0 and

for all (X0 = x0, · · · , Xn+1 = xn+1) s.t P(X0 = x0, · · · , Xn+1 = xn+1) > 0 the Markov

property P(xn+1|x0, · · · , xn) = P(xn+1|xn) = P (xn, xn+1) holds. Here, P (xn, xn+1)

denotes the entry of matrix P with row xn and column xn+1.

The rows of the transition matrix P represents a distribution over the x ∈ Ω and

sum to 1. Hence, P is row stochastic. The joint distribution of the Markov Chain is

fully specified given the specification of the initial state distribution d0, defined on Ω,

which can be represented as a row vector with size equal to |Ω|. Using the Markov

property we obtain that for any P(x0, · · · , xn+1) = P(xn+1|xn) · · ·P(x1|x0)d0(x0),

where d0(x0) is the element of d0 with column index x0.

Starting from the initial state distribution d0, the state occupation probabilities

after one step are given by d1 = d0P . Hence, dt = dt−1P and by expanding the

recurrence we obtain dt = d0P
t. Note that P t is the t-step transition probability.

4

CHAPTER 2. MARKOV CHAINS 5

Definition 2.1. A distribution d over Ω is called a stationary distribution if and only

if d = dP .

Hence, for any stationary distribution d we have d(x) = ∑
y∈Ω d(y)P (y, x),∀x ∈ Ω.

This set of |Ω| equations is known as balance equations.

Once the transition probabilities have been defined, we might want to characterize

the behavior of the Markov chain over the long-run. The first time a state x ∈ Ω is

visited during a rollout of the Markov chain is called the hitting time of x. Since the

rollout is stochastic, we expect the hitting time to be a random quantity. Formally,

the hitting time Tx is a random variable defined as Tx := min{n ≥ 0 : Xn = x}.

Similarly, the first return time of a state x ∈ Ω is random variable defined as

T+
x := min{n ≥ 1 : Xn = x}.

We denote by Px(.) and Ex[.] respectively the probability and expectation of an

event under the Markov chain starting at x ∈ Ω, i.e the initial distribution is defined

as d(y) = δy=x, where δ is the indicator function. Let ρx,y := Px(T+
y <∞) denote the

probability of reaching y from x where x, y ∈ Ω. A state x ∈ Ω is called recurrent if

ρx = 1 and transient if ρx < 1. Intuitively this means that when the chain is started

at state x, this state is seen an infinite number of times if it is recurrent and only

a finite number of times, after which it is never visited again, if it is transient. A

finer distinction among the recurrent states is obtained with the following definitions.

A state x is called positive recurrent if Ex[T+
x] < ∞. A state x is called null

recurrent if Ex[T+
x] =∞.

We say that two states x, y ∈ Ω communicate if ρx,y > 0. A communicating

class is a maximal set of states where all pairs of states communicate. A property

that is shared by all the states in a communicating class is called a class property.

Theorem 2.1. Recurrence is a class property.

Proof can be found in Theorem 1.2 in Chapter 3 of Brémaud, 1999.

CHAPTER 2. MARKOV CHAINS 6

Definition 2.2. A Markov chain is called irreducible is if consists a single commu-

nicating class.

An irreducible Markov chain is called positive recurrent, null recurrent or transient

if any of the states is positive recurrent, null recurrent or transient respectively.

Theorem 2.2. A Markov chain is irreducible and positive recurrent if and only if it

has a unique stationary distribution.

Theorem 2.3. Suppose that an irreducible Markov chain has a stationary distribution

d. Then d(x) = 1
Ex[T+

x]

The proof for Theorems 2.2 and 2.3 can be found in Theorem 3.1 and Theorem

3.2 in chapter 3 of Brémaud (1999).

Definition 2.3. The period of a state x ∈ Ω is defined as d(x) := gcd{t ∈ Z+ :

P t(x, x) > 0}.

A state x ∈ Ω is called aperiodic is d(x) = 1 and periodic otherwise.

Theorem 2.4. For an irreducible positive recurrent aperiodic Markov chain with sta-

tionary distribution d, dn n→∞−→ d.

The proof can be found in Theorem 2.1 of Chapter 4 in Brémaud (1999).

After generating a rollout of a Markov chain, we are interested in knowing whether

there is any relationship between looking at the chain in the reverse direction starting

from some time N and looking at the chain in the forward direction until time N .

Intuitively, there must be a relationship between the two views since they correspond

to the same process and P (k, k) = P̂ (k, k) for all k ∈ Ω and P̂ (x, y) ∝ P (y, x) where

P̂ is the transition matrix of the reverse chain. The following theorem formalizes this

intuition.

CHAPTER 2. MARKOV CHAINS 7

Theorem 2.5. Let (Xn)n≥0 be an irreducible Markov chain with transition matrix

P and stationary distribution d. Let Yn = XN−n for any N ∈ N. The time re-

versed Markov chain (Yn)n≥0 is an irreducible Markov chain with transition matrix

P̂ (x, y) = d(y)P (y,x)
d(x) ∀x, y ∈ Ω and d is a stationary distribution for (Yn)n∈N.

Definition 2.4. A Markov chain is time-reversible if P (x, y) = P̂ (x, y) ∀x, y ∈ Ω.

A time-reversible Markov chain satisfies the set of equations d(x)P (x, y) = d(y)P (y, x)

∀x, y ∈ Ω. This set of equations is called the detailed balance equations. A time-

reversible Markov chain looks indistinguishable in the forward and reverse direction

when d0 = d.

Definition 2.5. The mean first passage time from state x to state y, denoted by

m(y|x), is defined as the average number of steps to reach y when the chain is started

in x.

The mean first passage time satisfies the following recurrence relation

m(y|x) =


0, if x = y

1 + ∑
u∈Ω
u6=y

Pxum(y|u), otherwise

Definition 2.6. The mean commute time n(x, y) is defined as n(x, y) := m(x|y)+

m(y|x).

The mean commute time is symmetric by definition and it will play a fundamental

role in our approach of developing the state embedding.

3
Reinforcement Learning

Reinforcement Learning (RL) is the problem of learning goal-oriented behavior by in-

teracting with an environment. Markov Decision Processes (MDPs) provide a math-

ematical abstraction of the RL problem. MDPs can be considered a generalization of

Markov Chains to include notions of actions and rewards; the transition distribution

is conditioned on the actions in addition to the states and rewards assign utilities to

transitions. Solving a reinforcement learning problem corresponds to solving MDPs

but without assuming the knowledge of dynamics of the MDP. When the dynamics

of the environment is known apriori, the approach to solve MDPs is called Dynamic

Programming. In this chapter we introduce some important reinforcement learning

notions and solution methods. The notation and discussion in this chapter follows

(Sutton and Barto, 2018).

3.1 Preliminary Definitions

Let S, A and R be the set of states, actions and rewards respectively, which we assume

for simplicity to be finite. The set of actions available to an agent could depend on

the state. For notation convenience, we assume that all the actions are available in

all the states, but the definitions and the concepts presented apply in the general case

with only appropriate change in notations.

8

CHAPTER 3. REINFORCEMENT LEARNING 9

The reward function is a distribution over R from S × A. The dynamics

model p of the MDP is a probability distribution p(s′, r|s, a) over S ×R conditioned

on S × A. A sequence of states, actions and rewards experienced by the agent by

interacting with the environment, S0, A0, R1, S1, A1, R2, · · · , is known as a trajectory.

The length of the trajectory is called the horizon.

RL problems naturally fall into two categories: where the interaction with the en-

vironment terminates in a finite number of steps, and where the interaction continues

for infinite steps. The former is known as the finite horizon setting and the latter

is known as the infinite horizon or the continuing setting.

The return is defined as a function of the sequence of rewards experienced. In

the finite horizon setting, the total return is the sum of rewards starting from time

t, defined as Gt = ∑T−1
k=t Rk+1, where T is the horizon. In the infinite horizon setting,

the return as defined above might become infinite. The discounted return starting

from t is defined as Gt = ∑∞
k=t γ

k−tRk+1 where γ ∈ (0, 1) is the discount factor.

Discounting the rewards ensures that the return is finite as long as the rewards are

bounded. To unify the notations for the finite and the infinite horizon cases, we write

the return as Gt = ∑T
k=t+1 γ

k−t−1Rk where either T =∞ or γ = 1. The goal of a RL

agent is to find a way of behaving that optimizes the expected return, as we detail

below.

The sequence of rewards, and hence the return, depends on the behavior of the

agent, known as its policy. Formally, a policy π is a distribution over actions at every

state; the agent takes an action a at state s with probability π(a|s). The expected

return starting from a state s and following a policy π is termed the value of s,

denoted by vπ(s). Therefore, the value function of a policy is vπ : S → R. The

state-action value function qπ(s, a) is defined as the expected return starting from

state s and taking an action a and following π afterwards. vπ(s) can be written in

CHAPTER 3. REINFORCEMENT LEARNING 10

terms of qπ(s, a) as follows

vπ(s) =
∑
a∈A

π(a|s)qπ(s, a) (3.1)

The state-action value function can be written in terms of the state value function as

follows

qπ(s, a) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s, At = a]

=
∑
s′∈S

∑
r∈R

p(s′, r|s, a)[r + γvπ(s′)] (3.2)

Using equations 3.1 and 3.2, the value function can be recursively written as

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)[r + γvπ(s′)] (3.3)

and the state-action value function as

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)[r + γ
∑
a′∈A

π(a′|s′)qπ(s′, a′)] (3.4)

The equations (3.3) and (3.4) are called the Bellman equations for vπ and qπ

respectively. The set of Bellman equations (3.3) forms a linear system of |S| equations

in |S| unknowns. This system of equations has a unique solution if γ < 1 and the

Markov chain induced by π has a single recurrent class, or if the MDP is finite-horizon.

This solution is the value function vπ resulting from following the policy π.

The objective of solving an MDP is to find an optimal behavior that maximizes the

value of all the states. The value function, thus, induces a definition for what it means

for a policy to be better than another. Using the value function, we define a partial

order on Π, the space of all possible policies for the given MDP. For policies π′ and

π, π′ ≥ π if and only if vπ′(s) ≥ vπ(s),∀s ∈ S. π∗ is said to be an optimal policy

if π∗ ≥ π,∀π ∈ Π. Optimal policies are not necessarily unique. The probabilities

among actions with equal state-value functions in a state can be distributed in any

way without affecting the value of the state.

The value function under an optimal policy π∗ is denoted by v∗. From the defi-

nition of optimal policies given above, we can see that v∗(s) = argmaxπ∈Π vπ(s) and

CHAPTER 3. REINFORCEMENT LEARNING 11

v∗ is unique. The optimal state-action value functions q∗ is defined as q∗(s, a) =

maxπ qπ(s, a). Like the Bellman equations, v∗ and q∗ can be defined recursively,

called the Bellman optimality equations. We first define v∗ in terms of q∗ and q∗

in terms of v∗, similar to equations (3.1) and (3.2) to obtain the recursive definition.

The optimal state value is given by

v∗(s) = max
a

q∗(s, a) (3.5)

and the optimal state-action value function is given by

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γv∗(s)] (3.6)

Using equations (3.5) and (3.6), the optimal state and state-actions value functions

are written as follows

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)]

and

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s′, a′)] (3.8)

Since the objective of solving an MDP is to find π∗, it might seem unnecessary to

define or compute v∗, a quantity derived from π∗. The Bellman optimality equations

(3.1) and (3.8) define a non-linear system of |S| equations with |S| unknowns and

|S×A| equations with |S×A| unknowns respectively. Solving this system of equations

provides the optimal state and state-action value functions without the knowledge of

an optimal policy. An optimal policy π∗ can be recovered from v∗ using a one-step

search, or it can be obtained directly by being greedy with respect to q∗(s, a) in state

s, ∀s ∈ S. Thus, π∗ can be computed from q∗ and v∗.

3.2 Dynamic Programming

Dynamic Programming (DP) methods are used to solve MDPs when the dynamics of

the MDP are known. Ideas from DP methods lay the foundations for reinforcement

CHAPTER 3. REINFORCEMENT LEARNING 12

learning methods, even though DP methods are not applicable in the usual reinforce-

ment learning setting. In this section, we discuss how the value function for a given

policy can be computed, and how this value function can then be used to improve the

policy. A repeated application of this process returns an optimal policy which is guar-

anteed to be better than the policy with which we started, by the policy improvement

theorem. The combination of policy evaluation and policy improvement can be used

obtain an optimal policy. These two steps can be combined in several ways, leading

to a framework called the Generalized Policy Iteration (GPI), which is a recurring

theme in the DP and reinforcement learning methods. The methods discussed below

require that all the states continue to be updated to guarantee convergence to the

correct values. The same is also true for the reinforcement learning methods.

3.2.1 Policy Evaluation

Policy evaluation is the process of computing or estimating the value function vπ

for a given policy π. vπ is well defined when all the episodes starting from every

state s ∈ S terminate in a finite number of steps when behaving according to π, or

when γ < 1. As noted in the previous section, vπ may be obtained by solving the

linear system of |S| equations. In this section and in the subsequent section, iterative

approaches for computing vπ are favored instead, mainly due to the flexibility that an

iterative approach offers in terms of obtaining meaningful partial computations and

asynchronous updates. After all, the reason for computing the value function of a

given policy is to obtain an optimal policy; exact computation of the value function

is not a goal in itself to obtain optimal behavior.

Iterative policy evaluation produces a sequence of value functions {v0, v1, v2, · · · }

where v0 is initialized arbitrarily with the exception that the terminal states, if any,

have values of 0. This sequence converges to vπ. vk+1 is computed from vk as follows

vk+1(s) =
∑
a∈A

π(a|s)
∑

s′∈S,r∈R
p(s′, r|s, a)[r + γvk(s′)] (3.9)

CHAPTER 3. REINFORCEMENT LEARNING 13

Equation (3.9) is the Bellman equation for the state value function, but turned into

an update rule. If the sequence {vk} converges to v, then v satisfies the Bellman

equation for the value function under π. Since vπ is unique, v must be vπ. Thus, the

iterative process can be used to compute the value function vpi for a given policy π.

3.2.2 Policy Improvement Theorem

Assume vπ of a policy π can be used to obtain a policy π′ ≥ π. Then, vπ′ can be used

to obtain π′′ ≥ π′ and so on. Thus, if there is a mechanism to obtain a better policy π′

from a given policy π using its value function vπ, a sequence of better policies can be

obtained. We will now show that a better policy π′ given a policy π can be obtained

by being greedy with respect to vπ at every state s ∈ S. Let π and π′ be arbitrary

policies such that

qπ(s, π′(s)) ≥ vπ(s) ∀s ∈ S

where we use the notation qπ(s, π′(s)) = ∑
a∈A π

′(a|s)qπ(s, a). Now we will prove

vπ′(s) ≥ vπ(s) ∀s ∈ S where π and π′ are as defined above.

vπ(s) ≤ qπ(s, π′(s))

= Eπ′ [qπ(s, At)|St = s]

= Eπ′ [Rt+1 + γvπ(St+1)|St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s]

= Eπ′ [Rt+1 + γEπ′ [qπ(St+1, At+1)]|St = s]

= Eπ′ [Rt+1 + γqπ(St+1, At+1)|St = s]

= Eπ′ [Rt+1 + γRt+2 + γ2vπ(St+2)|St = s]
...

= Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s]

= vπ′(s)

CHAPTER 3. REINFORCEMENT LEARNING 14

Hence, the value function vπ′ of a policy π′ is at least as good as vπ whenever selecting

actions to π′ in s and following π afterwards is better than following π at s, ∀s ∈ S

i.e whenever qπ(s, π′(s)) ≥ vπ(s), ∀s ∈ S. Therefore, π′ ≥ π. This is known as the

policy improvement theorem.

From this, it is easy to see that a new policy π′ obtained by being greedy with

respect to vπ is a better policy than π, since maxa∈Aqπ(s, a) ≥ ∑
a∈A π(a|s)q(s, a),

∀s ∈ S.

Let {πk} be the sequence of policies obtained using the policy improvement the-

orem starting from some policy π0. Then πi+1 ≥ πi,∀i. Let πk+1 = πk for some k.

Then, the following equations hold

vπk+1(s) = vπk(s) (since πk+1 = πk) (3.10)

vπk+1(s) =
∑
s′,r

p(s′, r|s, πk+1(s))[r + γvπk+1(s′)] (using Bellman equation) (3.11)

πk+1(s) = argmaxa∈A
∑
s′,r

p(s′, r|s, a)[r + γvπk(s′)] (greedy action selection) (3.12)

vπk(s) = max
a∈A

∑
s′,r

p(s′, r|s, a)[r + γvπk(s′)] (using 3.10, 3.11 and 3.12)

Therefore, vπk satisfies the Bellman optimality equation. So, vπk = vπk+1 = v∗, the

optimal value function and πk and πk+1 are optimal policies. Therefore, policy im-

provement by being greedy with respect to current value function results in strictly

better policies, until an optimal policy is obtained.

3.2.3 Policy Iteration

Policy iteration is a procedure that combines policy evaluation and policy improve-

ment to obtain optimal policies, starting from an arbitrary policy π. First, the value

function vπ is computed using policy evaluation described in the previous section.

Then, the improved policy π′ is obtained by being greedy with respect to vπ. The

CHAPTER 3. REINFORCEMENT LEARNING 15

process is terminated if π′ = π. If not, the process is repeated with π set to π′ until

π = π′.

3.2.4 Value Iteration

In each iteration of policy iteration, the policy evaluation is performed until conver-

gence for the corresponding policy. Since the value functions of intermediate policies

are only used to improve the current policy, the exact convergence is not needed and

so the policy evaluation step of policy iteration can be terminated before the conver-

gence of vπ. Value iteration performs policy improvement and terminates the policy

evaluation step in exactly one step. The update for value iteration is given by

vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s′)]

Thus, value iteration is obtained by turning the Bellman optimality equation into

an update rule. The optimal policy is the greedy policy of the value function after

convergence.

3.3 Reinforcement Learning

Reinforcement learning (RL) methods aim to achieve the same effect as DP methods:

both DP and RL methods strive to compute the optimal policy using value functions.

RL methods differ from DP methods in their approach to policy evaluation. Two

equivalent definitions of value functions, one in terms of expected cumulative rewards

and other in terms of Bellman equations, give rise to two approaches to estimating

the value functions. The two approaches are called Monte Carlo (MC) and Temporal

Difference learning (TD) respectively.

Unlike DP methods which compute the value function using the knowledge of the

dynamics of the MDP, RL methods estimate the value function from the samples

obtained by interacting with the environment. In order to guarantee convergence to

CHAPTER 3. REINFORCEMENT LEARNING 16

the correct value function, both DP and RL methods require that all the states are

continued to be updated. Thus, the RL agent must interact with the environment in

a manner that guarantees that all the states or state action pairs are visited infinitely

often. The update rule in MC and TD methods can be thought of as updating the

value function towards an approximation of the return from some particular trajectory,

or an approximation of such a return. MC and TD differ in how they compute this

approximation.

3.3.1 Monte Carlo

Monte Carlo methods estimate the value functions by averaging the sample returns.

Hence, Monte Carlo returns are defined only for the finite horizon setting.

Let P π denote the Markov process induced by the transition dynamics p and the

policy π: P π(s′|s) = ∑
a∈A π(a|s)p(s′|s, a). For a state St in a trajectory τ ∼ P π,

Monte Carlo updates the estimate V of the value function V π as:

V (St) = V (St) + α[Gt − V (St)] (3.13)

where α ∈ (0, 1) is the learning rate, which controls the proportion of the current

estimate V (St) and the current return Gt used to compute the new estimate. A sample

return Gt in equation (3.13) is the cumulative sum of rewards Rt+1 + Rt+2 + · · ·RT

observed in τ (discounting is not necessary if the horizon is finite, but can be included

if desired too).

Unlike the DP setting, where systematic sweeps are performed, in reinforcement

learning only those states that have non-zero probability of being visited under π will

have their values updated. This is problematic; policy evaluation is a step towards

policy improvement. The value for each action in every state must be evaluated to

perform policy improvement. The additional mechanisms that make Monte Carlo

approaches suitable for policy improvement are discussed below.

CHAPTER 3. REINFORCEMENT LEARNING 17

In order to do policy improvement when the environment dynamics are not as-

sumed to be known, estimating the state-action value function instead of the state

value function side-steps the need for one-step search to select the action maximizing

the return. Since we are interested in control and performing policy improvement, we

assume that all the methods discussed below estimate the state-action value function.

3.3.1.1 Monte Carlo with exploring starts

Monte Carlo with exploring starts is the simplest, but not the most practical setup

that ensures that all pairs of states and actions have non-zero visitation probability.

In this setup, it is assumed that the agent starts in a state-action pair, where the

state-action pair is chosen by the environment. In the real world, this assumption is

limiting. More reasonable alternatives are discussed in the next section.

3.3.1.2 On-policy and Off-policy methods

To estimate the value function of all the states or state-action pairs, all actions must

continue to be selected. This can be achieved by the following two approaches. The

first approach is to ensure that the policy assigns non-zero probability to each action in

every state. This class of policies is known as soft-policies. In the policy improvement

phase, the current soft-policy is improved to obtain a new soft-policy. This approach

is known as on-policy approach, as the samples collected from the policy that was

executed are used to improve the policy. The second approach, known as the off-

policy approach, is to collect samples under a different policy, known as the behavior

policy b, to improve a different policy, known as the target policy π.

In the on-policy setting, the policy improvement theorem is used to show that the

policy improvement process produces a sequence of monotonically better policies, until

convergence to an optimal soft-policy, depending on how the softness is guaranteed

in policy improvement.

CHAPTER 3. REINFORCEMENT LEARNING 18

In the off-policy setting, since the behavior policy b and the target policy π are

different, averaging the returns obtained by following b will return the value function

estimate for the policy b. To compute the correct expectation of the returns under

π, the returns are re-weighted using the importance sampling ratios. The return Gt

following time step t for state St, is re-weighted using the ratio ρt:T−1 = ∏T−1
k=t

π(Ak|Sk)
b(Ak|Sk) .

For the state-action value function, the return Gt is re-weighted using ρt+1:T−1 =∏T−1
k=t+1

π(Ak|Sk)
b(Ak|Sk) . Since the target policy is different from the behavior policy, the

target policy can be made greedy with respect to the current value estimates during

policy improvement.

3.3.1.3 Off-policy Monte Carlo without Importance Sampling

Off-policy methods can be viewed as an exploring starts method but with a significant

difference; the agent performs exploring starts for itself instead of relying on the

environment. This can be understood as follows. When the importance sampling

ratio is 0 at some time step t, the ratio is 0 for all the time steps occurring before t. As

a result, the return for all the states up to St is 0. Let t be the last time step for which

π(At|St)/b(At|St) = 0 in a trajectory τ . When the target policy π is deterministic, all

the actions At+1, At+2, · · ·AT−1 must be exactly the same as those given by π. Hence,

the behavior policy b can be thought of as implicitly doing exploring starts, starting

from an initial state for a random number of steps k and following the target policy

π afterwards. The time k is determined by when the ratio is zero.

However, since the actions At+1, At+2, · · ·AT−1 are sampled from b, this action se-

quence has a different probability under the behavior and target policies and therefore

the returns have to be weighted by importance sampling. Alternatively, if the actions

are selected according to π starting from St+1 instead of sampling from b, the returns

need not be re-weighted. As a result, in the interactive settings, the need for impor-

tance sampling can be overcome in the following manner: apply the behavior policy

b for a random number of time steps, say t, and follow the target policy π afterwards

CHAPTER 3. REINFORCEMENT LEARNING 19

until termination and update the value of states St, St+1, · · ·ST−1 using the sample

returns under π.

3.3.2 Temporal Difference Learning

Temporal Difference (TD) prediction approximates the return Gt by bootstrapping

from the estimated value of the next state. Bootstrapping allows the TD prediction to

be applicable for both finite horizon and continuing tasks. Furthermore, bootstrapping

allows the return from one trajectory to improve the value estimates for even those

states that did not appear in the trajectory. As a result, TD prediction can be

intuitively seen to allow for efficient use of experience compared to MC methods, even

though there is no formal guarantee over MC. Formally,The TD update performed at

every state St is:

V (St) = V (St) + α[Rt+1 + γV (St+1)− V (St)] (3.14)

The quantity δ = Rt+1 +γV (St+1)−V (St) is called the temporal difference prediction

error, or TD error in short, and gives the error in the estimate of the value function

from one time step to the next.

The TD prediction differs qualitatively from the MC policy evaluation in the batch

setting. Given a batch of experiences, TD prediction implicitly estimates the maxi-

mum likelihood (MLE) model of the MDP for the observed batch and computes the

true value function for this approximate model. MC evaluation, unlike TD methods,

minimizes the mean squared error between the average observed returns and predicted

values. This partially informs the qualitative difference between TD and MC methods

in the online setting.

TD prediction is used in policy evaluation to obtain the value estimates for states

or state-action pairs. Using the value functions estimated using TD predictions for

policy improvement has the same considerations as the value functions estimated using

MC methods; all the states/state-action pairs must be continued to be updated. As

CHAPTER 3. REINFORCEMENT LEARNING 20

a result, TD methods used for control can be categorized into on-policy or off-policy.

In the control case, the state-action value function is estimated, for the same reason

as in MC methods. The update for state-action value estimates, similar to equation

(3.14), is given by:

Q(St, At) = Q(St, At) + α[Rt+1 + γV (St+1)−Q(St, At)] (3.15)

Whether TD methods for control are on-policy or off-policy depends on how V (St+1)

is chosen in the above equation. This is similar to MC methods, since Gt = Rt+1 +

γV (St+1), and depending on how Gt was computed, the MC method was categorized

into on-policy or off-policy.

3.3.2.1 Sarsa

Sarsa in an on-policy TD control method and hence V (St+1) in (3.15) is estimated

according to the behavior policy. Therefore, V (St) = Eπ[Q(St, At)] where π is the

behavior policy. Eπ[Q(St, At)] can be computed either by computing the average of

Q(St, At) where At ∼ π(.|St) or by computing the expectation ∑a∈A π(a|St)Q(St, a).

The former approach is called Sarsa and the latter approach is called expected Sarsa.

The update equations for Sarsa and expected Sarsa respectively are given below:

Q(St, At) = Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (3.16)

Q(St, At) = Q(St, At) + α[Rt+1 + γ
∑
a∈A

π(a|St+1)Q(St+1, a)−Q(St, At)] (3.17)

Since Sarsa is an on-policy method, the behavior policy π must be a soft-policy.

3.3.2.2 Q-Learning

Q-Learning is an off-policy method and hence the return V (St+1) in equation (3.15) is

computed according to the target policy. Since the target policy is the greedy policy

with respect to the currentQ estimates, V (St) = maxa∈AQ(St, a) where π is the target

policy. Therefore, the return is bootstrapped using Gt = Rt+1 + γmaxa∈AQ(St+1, a).

CHAPTER 3. REINFORCEMENT LEARNING 21

Similar to the discussion in 3.3.1.3, the behavior policy provides a mechanism of

exploring starts. However, MC methods estimate the returns from the sample trajec-

tories and thus require that either the target policy is followed until the end of the

episode, or the sample return from the behavior policy is re-weighted using the impor-

tance sampling ratios. In contrast, since TD methods bootstrap, maxa∈AQ(St+1, a)

provides a simulation of the expected return under the target policy. Thus, the be-

havior policy of Q-Learning can be interpreted as providing exploring starts and at

each state, the expected return from following the behavior policy is simulated to

obtain the targets. The update equation is written as follows:

Q(St, At) = Q(St, At) + α[Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At)] (3.18)

3.3.3 Policy Gradients

Policy Gradient (PG) methods learn a parameterized policy to map directly from

states to actions instead of estimating a value function from which to derive the policy

indirectly. The policy parameters θ are learned so as to maximize the performance

measured by the expected return, according to some distribution. In the episodic

case, the performance is measured in terms of the value of an initial state s0. Policy

gradient methods are favored in settings where the policy is easier to learn compared

to the value functions. These methods learn the policy parameters using gradient

ascent. Computing the gradient of the value function with respect to θ does not

require knowledge of the environment dynamics, as shown by the policy gradient

theorem. We derive the policy gradient theorem below. We use π to denote πθ and

Pπ(St+k = s′|St = s) to denote the probability of transitioning form s to s′ in k steps

CHAPTER 3. REINFORCEMENT LEARNING 22

under the Markov chain defined by the policy π and the dynamics p.

∇vπ(s) = ∇
∑
a∈A

π(a|s)qπ(s, a)

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
a∈A

π(a|s)∇qπ(s, a)

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
a∈A

π(a|s)∇
∑
s′,r

p(s′, r|s, a)[r + vπ(s′)]

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
s′

∑
a∈A

π(a|s)p(s′|s, a)∇vπ(s′)

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
s′
Pπ(St+1 = s′|St = s)∇vπ(s′)

=
∑
a∈A

qπ(s, a)∇π(a|s)+

∑
s′
Pπ(St+1 = s′|St = s)∇[

∑
a′∈A

qπ(s′, a) +
∑
s′′
Pπ(St+2 = s′′|St+1 = s′)∇vπ(s′′)]

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
s′
Pπ(St+1 = s′|St = s)

∑
a′∈A
∇qπ(s′, a)+

∑
s′
Pπ(St+1 = s′|St = s)

∑
s′′
Pπ(St+2 = s′′|St+1 = s′)∇vπ(s′′)

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
s′
Pπ(St+1 = s′|St = s)

∑
a′∈A
∇qπ(s′, a)+

∑
s′′

∑
s′
Pπ(St+1 = s′|St = s)Pπ(St+2 = s′′|St+1 = s′)∇vπ(s′′)

=
∑
a∈A

qπ(s, a)∇π(a|s) +
∑
s′
Pπ(St+1 = s′|St = s)

∑
a′∈A
∇qπ(s′, a)+

∑
s′
Pπ(St+2 = s′|St = s)∇vπ(s′)

...

=
∑
s′

∞∑
k=0

Pπ(St+k = s′|St = s)
∑
a∈A

qπ(s′, a)∇π(a|s′)

=
∑
s′

∞∑
k=0

Eπ[1(St+k=s′|St=s)]
∑
a∈A

qπ(s′, a)∇π(a|s′) (3.19)

CHAPTER 3. REINFORCEMENT LEARNING 23

The gradient of the value function starting from the initial state s0 is given by setting

s = s0 in equation. Thus, 3.19

∇vπ(s0) =
∑
s

∞∑
k=0

Eπ[1(St+k=s|St=s0)]
∑
a∈A

qπ(s, a)∇π(a|s)

=
∑
s

Eπ[
∞∑
k=0

1(St+k=s|St=s0)]
∑
a∈A

qπ(s, a)∇π(a|s)

= Eπ

[∑
a∈A

qπ(St, a)∇π(a|St)
∣∣∣S0 = s0

]
(3.20)

Thus, the gradient of the performance ∇vπ(s0) can be estimated from the trajectories

sampled under π. A more accurate description of the policy gradient theorem is that,

the gradient of the dynamics with respect to the policy parameters is 0; the effect

of θ on vπ(s) is only through actions taken at the states seen in the trajectory and

parameters are updated to increase the probability of actions leading to higher value.

That is, the parameter vector θ has control over only some aspects (selecting actions)

of the dynamical system and the parameters are updated to improve these controllable

aspects in a manner that improves the overall performance.

3.3.3.1 REINFORCE and Actor Critic

The quantity in equation (3.20) requires summation over all the actions. It will be

beneficial to find a way to replace the summation with some equivalent quantity that

only relies on the information contained within a trajectory.

Eπ

[∑
a∈A

qπ(St, a)∇π(a|St)
∣∣∣S0 = s0

]
= Eπ

[∑
a∈A

qπ(St, a)π(a|St)
π(a|St)

∇π(a|St)
∣∣∣∣∣S0 = s0

]

= Eπ

[∑
a∈A

π(a|St)qπ(St, a)∇π(a|St)
π(a|St)

∣∣∣∣∣S0 = s0

]

= Eπ

[
qπ(St, At)

∇π(At|St)
π(At|St)

∣∣∣∣∣S0 = s0

]

= Eπ

[
qπ(St, At)∇ ln π(At|St)

∣∣∣S0 = s0
]

(3.21)

CHAPTER 3. REINFORCEMENT LEARNING 24

Since E[Gt|St = s, At = a] = qπ(s, a), equation (3.21) can be written as

Eπ

[
qπ(St, At)∇ ln π(At|St)

∣∣∣S0 = s0
]

= Eπ

[
Eπ[Gt]∇ ln π(At|St)

∣∣∣S0 = s0
]

= Eπ

[
Gt∇ ln π(At|St)

∣∣∣S0 = s0
]

(3.22)

The expectation in equation (3.22) does not change if Gt is replaced with Gt − b(s)

where b(s) can be any function that does not depend on the actions. b(s) is called a

baseline. A typical choice of b(s) is the value of the state vπ(s). Gt − vπ(s) is called

the advantage function Aπ(s, a). The return Gt starting at time t can be estimated

either using a Monte Carlo approach or using bootstrapping. The former approach is

called REINFORCE and the latter is called Actor Critic.

3.3.3.2 TRPO

The algorithm we will propose in order to learn the embedding space is agnostic to

the algorithms used for policy evaluation or control. In our experiments, we use Trust

Region Policy Optimization (TRPO) (Schulman et al., 2015) to learn the policy used

for control. TRPO is a deep reinforcement learning algorithm, that is, the policy is

parameterized by a neural network whose parameters are denoted by θ. Let θold be

the current policy parameters. The objective function of TRPO is given by:

max
θ

Es∼ρold,a∼q

[
πθ(a|s)
q(a|s) Qθold(s, a)

]

subject to Es∼ρold [DKL(πθold(.|s) || πθ(.|s))] ≤ δ (3.23)

Equation (3.23) is an instance of natural gradient descent (Amari, 1998). Let g be

the gradient of the objective function with respect to θ. The direction of steepest

descent/ascent in the above problem is given by s = F−1g where F is the Fisher

information matrix. The Fisher information matrix can be defined as the expected

covariance matrix of the gradient of the log likelihood; the expectation is with respect

to the distribution induced by the current parameters. This solution is obtained using

a first-order approximation to the objective and second-order approximation of the

CHAPTER 3. REINFORCEMENT LEARNING 25

KL constraint using the gradient and Hessian evaluated at the current parameters.

In TRPO, this corresponds to evaluating at θold. To solve F−1g, TRPO uses conju-

gate gradient, as storing and inverting F is computationally intensive. The optimal

learning rate is given by α =
√

2δ
sTFs

. Due to the approximation of objective and the

constraints, updating using α might violate the constraints. So, the correct update is

obtained by performing line search, exponentially decaying the current step size until

a value that guarantees improvement is found.

The TRPO equation (3.23) is an approximation of

πi+1 = argmaxπ Lπi − CDmax
KL (πi, π)

where C = 4εγ
(1γ)2 and Lπi = η(πi) +

∑
s

ρπi(s)
∑
a

π(a|s)Aπi(s, a) (3.24)

where ε = maxs,a |Aπ(s, a)| and η(π) is the expected discounted return under π.

Schulman et al. (2015) show that optimizing equation (3.24) results in monotonically

better policies.

3.4 Goal Conditioned Reinforcement

Learning

A reinforcement learning task has the purpose of learning goal-directed behavior in

which the goal is specified by the reward function. Breaking down a complex task into

a set of simpler tasks can be beneficial to learning. These simpler tasks themselves are

characterized using suitable reward functions. A simple reward function for a sub-task

is a binary reward function which assigns 1 when the goal is achieved and 0 otherwise.

The policies of the different sub-tasks are then composed to achieve the overall task.

Instead of learning independent policies, the Universal Value Function Approximator

(UVFA) (Schaul et al., 2015) highlights the benefits of sharing the parameters across

these policies. The input to a UVFA is the concatenation of the state and the goal.

CHAPTER 3. REINFORCEMENT LEARNING 26

The goal space can be same as the state space, or it can be derived from the state

space. In some of our experiments, the objective is to reach all the feasible goals, and

in other experiments, a subset of the goal space is chosen to be desired goals. We

consider the goal space to be the same as the state space.

4
Graphs

The approach that we will propose for learning goals relies heavily on analyzing the

connectivity of the graph underlying the MDP of interest. In this chapter, we re-

view the necessary background from graph theory that will allow us to present our

algorithm.

Graphs are often used to model the relationships between objects, corresponding to

nodes/vertices. The relationships between the objects are represented by the edges of

the graph. Graphs primarily fall into two categories: directed and undirected graphs.

Directed graphs are useful to model asymmetric relationships and undirected graphs

are used to model symmetric relationships. In this chapter, we give a brief overview of

the preliminary definitions and theorems necessary to introduce a concept called the

graph Laplacian. The graph Laplacian is the fundamental object in techniques such

as spectral clustering and spectral graph drawing. In such methods, the eigenvectors

of the graph Laplacian are used to obtain a low-dimensional representation of the

vertices of the graph, which are then used for down-stream tasks such as clustering or

visualization. We assume that the graphs of interest are simple graphs, that is, there

are no self-loops and there is at most a single edge between any pair of nodes. The

discussion in this chapter follows (Gallier and Quaintance, 2017) (Chapter 20) and

(Luxburg, 2007).

27

CHAPTER 4. GRAPHS 28

4.1 Preliminary definitions

4.1.1 Directed Graphs

Definition 4.1. A directed graph G = (V,E) is a pair of collections, where V =

{v1, · · · vm} is the set of vertices and E is a collection of ordered pairs of distinct

vertices, called the edges.

Definition 4.2. The degree of a node u is defined as the number of incoming and

outgoing edges incident on u. A walk between nodes u and v is a sequence of nodes

{v0, · · · , vk} where v0 = u, vk = v and (vi, vi+1) ∈ E for all i ∈ [0, k − 1].

Definition 4.3. A pair of nodes (u, v) is said to be connected if there exists a walk

from u to v and vice-versa. A binary relation that defines two nodes to be related

if they are connected is an equivalence relation and the corresponding equivalence

classes are called the strongly connected components of the graph, that is, there

exists a walk for any pair of nodes in the same connected component. The graph is

said to be strongly connected if there is a single equivalence class.

Next, we present two of the possible approaches to represent directed graphs.

Definition 4.4. If the directed graph has m vertices and n edges, the incidence

matrix B is a m× n matrix whose entries are defined as follows

Bij =



+1 if node vi is the source vertex in edge ej

−1 if node vi is the destination vertex in edge ej

0 otherwise

Definition 4.5. In directed graphs, a node v is said to be adjacent to a node u, if

there is an edge from u and v. The adjacency matrix is a m × m matrix whose

CHAPTER 4. GRAPHS 29

entries are given by

Aij =


1 if there is an edge from node vi to vj

0 otherwise

4.1.2 Undirected Graphs

Definition 4.6. An undirected graph G = (V,E) is a pair of collections, where

V = {v1, · · · vm} is the set of vertices and E ⊆ V ×V is a collection of sets of distinct

vertices called the edges.

Definition 4.7. The degree of a node u is defined as the number of incoming (or

equivalently outgoing) edges incident on u. A walk between nodes u and v is a

sequence of nodes {v0, · · · , vk} where v0 = u, vk = v and (vi, vi+1) ∈ E for all

i ∈ [0, k − 1].

Definition 4.8. A pair of nodes (u, v) is said to be connected if there exists a walk

from u to v and vice-versa. A binary relation that defines two nodes to be related if

they are connected is an equivalence relation. The corresponding equivalence classes

are called the connected components of the undirected graph. If there is only one

equivalence class, the undirected graph is said to be connected.

Two possible approaches to represent undirected graphs are presented below.

Definition 4.9. If the undirected graph has m vertices and n edges, the incidence

matrix B is a m× n matrix whose entries are defined as follows

Bij =


+1 if node vi is a vertex in edge ej

0 otherwise

Definition 4.10. In undirected graphs, a node v is said to be adjacent to a node

u, if there is an edge between u and v. The adjacency matrix is a m ×m matrix

CHAPTER 4. GRAPHS 30

whose entries are given by

Aij =


1 if there is an edge between nodes vi and vj

0 otherwise

In the case of undirected graphs, the adjacency matrix is symmetric.

4.1.3 Weighted Graphs

The notion of edges can be extended to weighted edges to include the strength of

the connection between the nodes or to denote the cost of moving from one node to

another. Informally, graphs whose edges have weights associated with them are called

weighted graphs and have many real world applications such as modelling the routes

in a city. The formal definitions for the weighted and unweighted cases are given

below.

Definition 4.11. A weighted directed graph G = (V,W) is a pair where V =

{v1, · · · vm} is the collection of vertices and W is a m ×m matrix with non-negative

entries. An edge is said to be present from node vi to vj if Wij > 0. The degree of a

node vi is the sum of the weights of the incoming and outgoing edges incident on vi.

Definition 4.12. Given a weighted directed graph G = (V,W) with m nodes and n

edges, the incidence matrix B is a m× n matrix whose elements are given by

Bij =



+√wik for edge ej = (vi, vk)

−√wik for edge ej = (vk, vi)

0 otherwise

Definition 4.13. A weighted undirected graph G = (V,W) is a pair where

V = {v1, · · · vm} is the collection of vertices andW is a m×m symmetric matrix with

non-negative entries. An edge is said to be present from node vi to vj if Wij > 0. The

degree of a node vi is the sum of the weights of the incoming (or equivalently, the

outgoing) edges incident on vi.

CHAPTER 4. GRAPHS 31

Definition 4.14. Given a weighted undirected graph G = (V,W) with m nodes and

n edges, the incidence matrix B is a m× n matrix whose elements are given by

Bij =


√
wik for edge ej = {vi, vk}

0 otherwise

In both the directed and the undirected cases, the weights W can be viewed as a

generalization of the adjacency matrix.

4.2 Graph Laplacian

We provide the definition of the unnormalized and normalized graph Laplacian and

then remark on some properties.

Definition 4.15. An orientation of a weighted undirected graph G = (V,W) is

function σ : E → V × V such that σ({u, v} ∈ E) = (u, v) or (v, u).

Definition 4.16. Given a weighted undirected graph G = (V,W), the oriented

graph Gσ = (V,W σ) is obtained by applying an orientation σ on G.

From the previous definition, we can see that for any weighted undirected graph

G = (V,W), BBT = D −W where B is the incidence matrix of any orientation Gσ

of G and D is the diagonal degree matrix.

Definition 4.17. The unnormalized Laplacian of a weighted undirected graph

G = (V,W) is defined as L = BBT = D−W where B is the incidence matrix of any

orientation Gσ obtained from G and D is the degree matrix.

Let G = (V,W) be an weighted undirected graph. In order to discuss the proper-

ties of the Laplacian as defined above, we first interpret the vectors in Rm and Rn as

real valued functions of the vertices and edges respectively. Hence, L can be viewed

as a linear operator on V and B can be viewed as a linear transformation B : E → V .

CHAPTER 4. GRAPHS 32

Note that B is the incidence matrix obtained from any orientation σ of G and hence, if

(vi, vj) is an edge, then (vj, vi) is not an edge in Gσ. For x ∈ Rm, (BTx)k = (xi− xj)

such that ek = (vi, vj); the component of BTx ∈ Rn is the difference between the

value of x at the source vertex and the destination vertex of the corresponding edge.

Hence, it can be verified that for x ∈ Rm, (Lx)i = ∑m
j=1wij(xi − xj).

For any x ∈ Rm in the nullspace of BT , the values of vi and vj are equal if there is

an edge vi, vj in G. As a result, all the nodes connected to vi have the same value as vi.

This implies that the nodes in the same connected component have the same value.

Let c be the number of connected components of G. Hence, we can see that a basis

for the nullspace of BT is z1, · · · , zc where zki = 1 if the node vk is in the ith connected

component of G, otherwise zki = 0. Therefore, the nullity of BT = c. Using the rank-

nullity theorem, we obtain the rank(BT) = m − c and therefore rank(B) = m − c,

since the row rank of a matrix is equal to its column rank.

From the definition L = BBT , we can also deduce that the nullspace of L is same

as that of BT and rank(L)=rank(BT) =rank(B) = m − c. If the graph G = (V,W)

is connected, then the null space of L is spanned by 1, a vector of all ones. From

the definition of L, it follows that the unnormalized Laplacians are symmetric and

positive semi-definite. Hence, the eigenvalues of the unnormalized Laplacian are all

real and non-negative.

Since the orthogonal complement of the null-space of the linear transformation is

invertible and a vector of all ones 1 spans the nullspace of L, the psedudo-inverse of

the Laplacian is intuitively given by L† = (L+ 1
m

11T)−1 − 1
m

11T .

Though the approach to obtain state embedding introduced in this thesis is based

on the unnormalized Laplacian, we present the definitions of the normalized Laplacian

and its properties for completeness. The two variants of the normalized Laplacians

are as defined as Lsym = D−
1
2LD−

1
2 and Lrw = D−1L = I −D−1W = D−

1
2LsymD

1
2 .

Suppose λ is an eigenvalue of Lrw and u is a corresponding eigenvector, then

λu = Lrwu = D−1Lu = λD−1u and therefore, Lu = λDu. Thus, the eigenvectors

CHAPTER 4. GRAPHS 33

of Lrw are the solutions to the generalized eigenvalue problem Lu = λDu. The

eigenvectors of Lrw, referred to as degree normalized eigenvectors in (Koren, 2003),

are discussed in section 6.

Suppose λ is an eigenvalue of Lrw and u is the corresponding eigenvector, then

D−
1
2LsymD

1
2u = λu implies LsymD

1
2u = λD

1
2u. Therefore, λ is also an eigenvalue of

Lsym and D
1
2u is the corresponding eigenvector. Conversely, if λ is a eigenvalue of

Lsym and u is the corresponding eigenvector, then Lsymu = λu implies D− 1
2Lsymu =

D−
1
2LsymD

1
2D−

1
2u = LrwD

− 1
2u = λD−

1
2u. Therefore, the eigenvalues of Lsym and

Lrw are the same and the eigenvectors one can be obtained from that of the other.

If x ∈ Rm is in the nullspace of L, then x is also in the nullspace of Lrw = D−1L.

Conversely, if Lrwx = D−1Lx = 0, then Lx = 0. Therefore, the nullspace of Lrw is

the same as that of L. Thus, the nullspace of Lsym is D 1
2x for x in nullspace of Lrw.

Since Lsym is symmetric and since the eigenvalues of Lsym and Lrw are the same,

the eigenvalues of Lsym and Lrw are real valued. Since L is positive semi-definite,

Lsym is also positive semi-definite since yLy ≥ 0 for any y ∈ Rm including D− 1
2x for

any x ∈ Rm.

5
Dimensionality Reduction

Developing algorithms to visualize vast quantities of data is an important area of

research and is the object of study of areas such as multidimensional scaling(MDS) and

graph drawing. A crucial component in this process of visualization is representing the

high-dimensional raw data in low dimensions preserving the properties of interest and

the goodness of a low-dimensional representation is measured with respect to a task-

specific objective. In this chapter, we explain the basic tools in Multi-Dimensional

Scaling (MDS) and graph drawing. Our approach to learning state embeddings in

MDPs draws extensively on the ideas presented in this chapter.

5.1 Multidimensional Scaling

The study of MDS is concerned with finding a low-dimensional configuration of ob-

jects by taking as input a set of pairwise dissimilarities between the objects. The

resulting low-dimensional configuration has to be such that the distance in this the

low-dimensional configuration between any pair of objects preserves the correspond-

ing pairwise dissimilarities provided as input. As the dissimilarities are mapped to

distances in the low-dimensional space, the input dissimilarities cannot be arbitrary

and must satisfy certain constraints for MDS to be applicable. It is crucial that the

dissimilarities are symmetric, non-negative and obey the triangle inequality. The out-

34

CHAPTER 5. DIMENSIONALITY REDUCTION 35

put low-dimensional configuration is typically taken to be in the Euclidean geometry

and sometimes uses the Manhattan-distance. Other geometries have been explored

but are not as popular.

MDS in its original form is now called Classical MDS(CMDS) or Toegerson

scaling. CMDS is simply the eigen-decomposition of a matrix derived from the dis-

similarity matrix. The procedure of CMDS is explained in more detail in Section 5.1.2.

The more modern approach to MDS minimizes an objective function called stress

and does not have an analytic solution. In some settings, it is only desired to preserve

the order or the rank of the pairwise distances of the objects. This type of ordinal

constraints is the subject of non-metric MDS. In contrast, the methods that pre-

serve the pairwise distances are classified as metric MDS methods. Our application

of MDS is to preserve the pairwise dissimilarities and not just the ordinal informa-

tion and hence we do not discuss non-metric MDS in this thesis. The discussion and

notation follows (Borg and Groenen, 2006).

5.1.1 Metric MDS

To introduce the framework of MDS we use the notationX ∈ Rn×m for a configuration

of n objects in m-dimensional space, δij denotes the pairwise dissimilarities between

the objects (i, j) and dij(X) denotes the Euclidean distance between objects (i, j)

given by the configuration X. Sometimes the shorthand notation dij is used instead

of dij(X). The error between the input dissimilarity and the distance according to

the configuration X for any pairs of objects i and j is denoted by eij = (dij(X)−δij)2.

Since it may not always be possible to obtain a configuration X such that dij(X) = δij

for every pair of objects i and j, the error terms eij are weighted by the non-negative

wij proportional to the importance of the pair (i, j). The weights of pairs (i, j) for

which δij are missing is set to wij = 0. The weights wij are assumed to be irreducible,

which means that there does not exist a partition of the objects such that wij = 0

CHAPTER 5. DIMENSIONALITY REDUCTION 36

whenever i and j belong to a different partition. An MDS problem can be decomposed

into multiple sub-problems whenever the weights are not irreducible, such that each

sub-problem has an irreducible set of weights. Therefore without loss of generality, we

assume that the weights are irreducible. Using the terms defined above, the problem

of finding a configuration X can be expressed as an optimization problem of the form:

σr(X) =
∑
i<j

wij(dij(X)− δij)2 where wij ≥ 0 (5.1)

The quantity in equation (5.1) is known as raw stress. The dissimilarities δij can be

transformed by a function f : R → R given by d̂ij = f(δij). Different choices of f

correspond to different MDS models. The class of MDS models induced by restricting

f to be continuous corresponds to metric MDS. For example f could be a scaling

function defined as f(x) = bx for some constant b > 0. Such models are known as

ratio MDS and are special case of metric MDS. The raw stress σr(X) defined in

5.1 is dependent on the scale of input δij, which causes difficultly in making task

agnostic guidelines of how small of a stress is considered good enough. In order to

make such general guidelines, the raw stress σr is normalized by ∑ d2
ij(X). We are are

simply concerned with a single task and are not concerned about making any general

recommendations for the value of the stress. We therefore proceed to use the raw

stress σr(X), with the modification of using d̂ij instead of δij to consider the general

case of allowing a continuous transformation of δij. Hence, for a continuous function

f , the raw stress is redefined as

σr(X) =
∑
i<j

wij(dij(X)− d̂ij)2 where wij ≥ 0 and d̂ij = f(δij) (5.2)

In general it is not possible to solve metric and non-metric MDS problems ana-

lytically and hence we have to resort to iterative approaches to solve MDS. Kruskal

(1964) solved MDS using gradient descent but a more popular approach uses a tech-

nique called majorization. Majorization is an iterative procedure for minimizing a

function f(x) by iteratively upper bounding f by a function g(z, x) whose minimum

CHAPTER 5. DIMENSIONALITY REDUCTION 37

is easy to compute, and such that g(x, x) = f(x) for some fixed x. The minimum

x∗ of g(z, x) is chosen as x for the next iteration and this procedure is repeated until

convergence. Majorization produces a sequence of non-increasing solutions but it is

not guaranteed to converge to the global minimum. Most of the effort to minimize

a function f using majorization is spent on finding the function g which satisfies

the properties mentioned above. We employ neural networks and stochastic gradient

descent to minimize stress. Expanding equation (5.2) results in:

σr(X) =
∑
i<j

wij(dij − d̂ij)2

=
∑
i<j

wijd
2
ij +

∑
i<j

wij d̂
2
ij − 2

∑
i<j

wijdij d̂ij

The second term in the above equation can be expressed succinctly in matrix notation

using ||.|| to represent the 2-norm: ei ∈ R1×n such that ith index is 1 and 0 otherwise,

Aij ∈ Rn×n is matrix such that Aijii = Aijjj = 1 and Aijij = Aijji = −1 and xi to denote

the ith row of X

∑
i<j

wij d̂
2
ij =

∑
i<j

wij||xi − xj||2

=
∑
i<j

wij(eiX − ejX)(eiX − ejX)T

=
∑
i<j

wijtr((eiX − ejX)T (eiX − ejX))

=
∑
i<j

wijtr(XT (eTi ei + eTj ej − eTi ej − eTj ei)X)

=
∑
i<j

wijtr(XTAijX)

= tr(XT (
∑
i<j

wijA
ij)X)

= tr(XTV X) (5.3)

The entries in V in equation (5.3) are of the form Vii = ∑
j 6=iwij and Vij = −wij for

i 6= j. Hence, we can write V = D −W where Dij = 0 for i 6= j and Dii = ∑
i 6=j wij

and Wij = wij for i 6= j and Wii = 0.

CHAPTER 5. DIMENSIONALITY REDUCTION 38

The weights wij are set to emphasize the importance of accurately representing

a δij. In the case where representing the small and large dissimilarities accurately is

equally important, the stress function is modified as:

σEL =
∑
i<j

(
1− dij(X)

d̂ij

)2

=
∑
i<j

d̂2
ij(dij − d̂ij)2 (5.4)

σEL in equation (5.4) is called elastic scaling. This shows that the raw stress σr

emphasizes larger dissimilarities when wij = 1 for all (i, j). The loss function of

Sammon mapping (Sammon, 1969) is obtained by setting wij = d̂−1
ij . Other choices

for metric MDS models are presented in (Borg and Groenen, 2006).

5.1.2 Classical MDS

The objective of CMDS is to find a configuration of the objects by assuming that the

dissimilarities are distances in some Euclidean space. First, we discuss the tools used

in CMDS, followed by the explanation of CMDS.

Provided with a matrix X ∈ Rn×m of n objects in m-dimensional space, we

can form the squared pairwise distance matrix denoted by D(2) ∈ Rn×n such that

D
(2)
ij = ||xi − xj||2 and can be expressed as D(2) = c1T + 1cT − 2XXT where c ∈ Rm

such that ci = ||xi||2 and 1 ∈ Rn because

d
(2)
ij (X) = ||xi − xj||2

= ||xi||2 + ||xj||2 − 2xixTj

Let B = XXT . The squared pairwise distances matrix D(2) and the scalar product

matrix B can be obtained from the configuration matrix X. A natural question that

arises is whether the we can recover X given D(2) or B. Recovering X from D(2) is

the objective of CMDS. First, let us consider the simpler case of recovering X from

the scalar product matrix B.

Since B is symmetric and positive semi-definite, B admits an eigen-decomposition

B = QΛQT = QΛ 1
2 Λ 1

2QT = X
′
X

′T (5.5)

CHAPTER 5. DIMENSIONALITY REDUCTION 39

where Λii is the ith largest eigenvalue of B and Q is an orthogonal matrix whose

columns consist of eigenvectors of B ordered by their corresponding eigenvalues in

descending order. The positive semi-definiteness of B ensures that all the eigenvalues

are greater than or equal to 0. Since (X ′
X

′T)ij = Bij, the pairwise distances on X ′

preserves pairwise distances in D(2). Hence, given a pairwise scalar product matrix

B, a configuration X ′ that preserves the pairwise distances can be recovered. Due to

the use of Euclidean distance, the origin is assumed to be 0 ∈ Rn.

We now proceed to describe the procedure for obtaining a configuration that pre-

serves squared pairwise distances given in D(2). Let J = I − 1
n
11T ∈ Rn×n. For

any x ∈ Rn, y = Jx is a column vector in Rn balanced on the origin. Similarly for

x ∈ R1×n, xJ is a row vector balanced on the origin. Multiplying a matrix X by J

from both right and left is known as double-centering X, since the rows and columns

of X are balanced on the origin. Since D(2) = c1T + 1cT − 2XXT we get

−1
2JD

(2)J = −1
2J(c1T + 1cT − 2XXT)J

= 0− 0 + JXXTJ (5.6)

because J1 = 0. Since we are only interested in a configuration X that preserves the

distance by the application of CMDS, we assume that the columns of X are centered

on 0. Therefore JX = X. Hence, equation (5.6) is written as −1
2JD

(2)J = XXT = B.

Therefore, given D(2), B is derived using the double-centering operation and multi-

plication by −0.5. Following Equation (5.5), an eigen-decomposition is performed

on B = QΛ 1
2 Λ 1

2QT . Let Λ
1
2
+ be the matrix containing columns corresponding to the

positive eigenvalues and Q+ be the corresponding eigenvectors. A configuration that

preserves the pairwise distances is then obtained X = Q+Λ
1
2
+. Since the dissimilar-

ities are only assumed to be in Euclidean space and the original Euclidean space is

unknown, the notation ∆(2) is used instead of D(2).

To summarize, given a squared pairwise dissimilarity matrix ∆(2), CMDS first

computes B = −1
2J∆(2)J and then an eigen-decomposition of B = QΛQT and then

CHAPTER 5. DIMENSIONALITY REDUCTION 40

X = Q+Λ
1
2
+ is computed to the be the configuration of objects. If ∆ in fact corresponds

to Euclidean distance, then an exact configuration is obtained. This shows that the

solution to CMDS can be computed analytically. An alternate characterization of

CMDS is given by the loss function L(X) = ||XXT −B||2F known as strain where F

is the Frobenius norm. Due to the Frobenius norm, strain can be written as:

L(X) =
∑
i<j

(xixTj −Bij)2 (5.7)

showing that CMDS can be used in an iterative setting but minimizing strain does

not correspond to minimizing stress.

5.2 Graph Drawing

Graph drawing is the study of representing a graph G = (V,E) in Rn for n << |V |.

Each node v ∈ V is mapped to ρ(v) and a line segment is drawn between ρ(vi)

and ρ(vj) whenever (vi, vj) ∈ E. The graph drawing problem can be generalized

to consider other geometries. In this thesis we are concerned with approaches to

drawing undirected graphs. See Kobourov, 2012 for a survey of algorithms for drawing

undirected graphs whose edges represented by straight lines. The methods described

in this section corresponds to an approach called force directed drawing where there is

a tension between attractive forces attempting to place neighbouring nodes closer and

repulsive forces that pushes away all the nodes apart from each other. The attractive

forces usually correspond to some graph theoretic distance such as the shortest path

between nodes. In this section we review the graph drawing approaches relevant for

our approach to learn state embeddings. Both of the approaches presented below

assume that the graph is connected. In the case of a disconnected graph, the graph

drawing problem can be solved for each of the connected components. Hence, in this

section we assume that the graphs are connected without loss of generality.

CHAPTER 5. DIMENSIONALITY REDUCTION 41

5.2.1 Stress Minimization

Kamada and Kawai, 1989 model the graph drawing problem as a dynamical system

where the nodes are connected by springs. The length of the spring connecting a

pair of nodes corresponds to the desired distance between this pair of nodes. Their

approach to draw undirected graphs is by minimizing an energy function given by

E = 1
2
∑
i<j

kij(||xi − xj|| − lij)2 (5.8)

where lij = L×dij and L is a constant and kij are the strengths of the spring. Kamada

and Kawai, 1989 minimize this energy function E using Newton-Raphson. The energy

function E in equation (5.8) is the stress function of metric MDS introduced in section

This is precisely the stress function introduced in (5.1.1). Gansner, Koren, and North,

2004 note this connection and found that minimizing the energy function E using

majorization leads to better layouts and reduces the running time.

5.2.2 Spectral Graph Drawing

Spectral graph drawing is the approach of using eigenvectors and eigenvalues of matri-

ces related to an undirected graph G = (V,E) for the graph drawing problem. Koren,

2003 highlights the advantages of using spectral properties of the Laplacian matrix

associated with the given graph in the context of graph drawing. Since the graph is

connected by assumption, the null space of the Laplacian L = D−A is 1-dimensional

spanned by 1 and hence the multiplicity of the eigenvalue 0 is 1.

Let n = |V |. Koren, 2003 introduce the graph drawing problem in 1-dimension as

the following constraint optimization problem of the energy function

E(x) =
∑
i<j

wij(xi − xj)2 s.t V ar(x) = 1 (5.9)

where x ∈ Rn. This approach is known as the eigen-projection method. The energy

function E(x) = ∑
i<j wij(xi − xj)2 can be succinctly represented as E(x) = xTLx us-

CHAPTER 5. DIMENSIONALITY REDUCTION 42

ing equation (5.3). An alternate derivation is shown here by expanding the terms

∑
i<j

wij(xi − xj)2 =
n∑
i=1

n∑
j=i+1

wij(xi − xj)2

=
n∑
i=1

n∑
j=i+1

wij(x2
i + x2

j)− 2
n∑
i=1

n∑
j=i+1

wijxixj (5.10)

We solve the first and second terms separately and combine them to obtain the desired

result. First we show 2
n∑
i=1

n∑
j=i+1

wijxixj = xTAx.

2
n∑
i=1

n∑
j=i+1

wijxixj =
n∑
i=1

n∑
j=i+1

wijxixj +
n∑
i=1

n∑
j=i+1

wijxixj

=
n∑
i=1

xi
n∑

j=i+1
wijxj +

n∑
i=1

n∑
j=i+1

wjixixj (since wij = wji)

=
n∑
i=1

xi
n∑

j=i+1
wijxj +

n∑
j=1

j−1∑
i=1

wjixixj

=
n∑
i=1

xi
n∑

j=i+1
wijxj +

n∑
i=1

i−1∑
j=1

wijxixj (by change of variable)

=
n∑
i=1

xi
n∑

j=i+1
wijxj +

n∑
i=1

xi
i−1∑
j=1

wijxj

=
n∑
i=1

xi
n∑
j=1

wijxj (since wii = 0)

= xTAx (5.11)

Similarly, we show
n∑
i=1

n∑
j=i+1

wij(x2
i + x2

j) = xTDx below

n∑
i=1

n∑
j=i+1

wij(x2
i + x2

j) =
n∑
i=1

n∑
j=i+1

wijx
2
i +

n∑
i=1

n∑
j=i+1

wjix
2
j

=
n∑
i=1

n∑
j=i+1

wijx
2
i +

n∑
i=1

i−1∑
j=1

wijx
2
i (similar to above proof)

=
n∑
i=1

x2
ii

n∑
j=1

wij

=
n∑
i=1

x2
iideg(i)

= xTDx (5.12)

Using equations (5.11) and (5.12) in equation (5.10), we obtain E(x) = xTLx. Fur-

ther, by assuming that the mean of x is zero and V ar(x) = 1
2 , the following equation

CHAPTER 5. DIMENSIONALITY REDUCTION 43

for energy is obtained

min
x
E(x) =

∑
i<j

wij(xi − xj)2 given xTx = 1 (5.13)

Koren, 2003 prove that x corresponds to the eigenvector corresponding to the lowest

eigenvalue. The lowest eigenvalue is 0 and the corresponding eigenvector is 1 result-

ing in a degenerate solution. To overcome this uninteresting solution, an additional

constraint that x is orthogonal to 1 is added. As a result, the energy is minimized by

choosing the eigenvector corresponding to the lowest positive eigenvalue.

Often it is desired to represent the nodes in more than one dimension. The m-

dimensional representation is obtained by minimizing the energy under the constraint

that xTy = 0 where y = ∑
i<m xi in which xi are the eigenvectors corresponding

to ith lowest positive eigenvalue. This constraint is added in addition to the usual

constraints of xTx = 1 and xT1 = 0. The result presented in Koren, 2003 show that

mth dimension corresponds to the eigenvector of mth smallest positive eigenvalue.

The choice of setting V ar(x) = 1
n
is arbitrary and any fixed positive value may

be used for the variance. Using a fixed variance on all dimensions results in scatter-

ing the nodes equally along axis. While minimizing the energy for a fixed variance

produces aesthetically pleasing graph drawing is it suitable for learning state embed-

dings? Intuitively the answer must be no since not all directions of variations must

be weighted equally and more so when the embedding is used to compute distances.

This intuition is formally shown to be correct chapter 7.

An intuitive interpretation of the solution of the eigen-projection method is pro-

vided in Koren, 2003. To understand the interpretation let us first characterize the

solution to the energy minimization problem. By setting the derivative of E(x) to be

CHAPTER 5. DIMENSIONALITY REDUCTION 44

zero with respect to a fixed xi we obtain

∑
xj∈N(xi)

wij(xi − xj) = 0

∑
xj∈N(xi)

wijxi =
∑

xj∈N(xi)
wijxj

xideg(xi) =
∑

xj∈N(xi)
wijxj

xi =
∑

xj∈N(xi)

wij
deg(xi)

xj

xi =
∑

xj∈N(xi)
pijxj (5.14)

where pij is the probability of transitioning from node i to j in the random walk on

the graph. The transition probability matrix is P = D−1A. Equation (5.14) can

be interpreted the minimum of energy function is obtained by placing each node at

the weighted centroid of its neighbours. This is trivially achieved by assigning all

the nodes to the same embedding. The condition that each node can deviate from

the centroid of its neighbours proportional to its current location, a constant value

λ which is common to all the nodes and inversely proportional to its degree can be

expressed simultaneously for all nodes as Lx = λx because

(I −D−1A)x = λD−1x

(D − A)x = λx

Lx = λx

Hence, the eigenvector associated with an eigenvalue λ of the Laplacian allows the

position of the node i to deviate from the weighted centroid of its neighbours by

λ × deg(i)−1 × x(i) where x(i) is the current position of the node i. Letting the

nodes deviate from its centroid by the inverse of their degrees causes nodes with very

small degrees to be situated very far from the centroid of its neighbours leading to a

drawing where the nodes that are highly connected are densely drawn in a small area

and the nodes with low degrees occupy most of the area and are sparsely located.

CHAPTER 5. DIMENSIONALITY REDUCTION 45

Such a drawing results in poor readability. In order to alleviate the dependence on

the degree of the nodes, we may consider the following setup to obtain a balanced

drawing

(I −D−1A)x = λx

(D − A)x = λDx

Lx = λDx (5.15)

The generalized eigenvectors of equation (5.15) are called degree-normalized eigenvec-

tors. The eigen problem in equation (5.15) is the solution to the following optimization

problem

min
x
xTLx s.t xTDx = 1 and xTD1 = 0 (5.16)

The relationship between certain optimization problems and the eigenvalue problems

are given in Ghojogh, Karray, and Crowley, 2019. The proof of the claims made in

this section can be found in Koren, 2003 or follows directly from equation (12) of

Ghojogh, Karray, and Crowley, 2019.

5.2.3 Comparison of stress minimization and spectral graph

drawing

The energy function of stress and that of spectral graph drawing can be seen to be

minimizing ||xi − xj||2 for all pairs of (i, j). Equation (5.14) proves that ||xi − xj||2

is minimized by placing the nodes on the weighted centroid of its neighbours. The

spectral graph drawing approach avoids the trivial solution of placing all the nodes

in the same location by requiring that nodes deviate from the weighted centroid of

their neighbours by some positive value λ × x(i) and λ × deg(i)−1 × x(i) in degree

normalized and eigen-projection methods respectively.

Metric MDS takes as input the dissimilarities in addition to the weights. Hence,

intuitively we expect the metric MDS objective given in equation (5.1) to place the

CHAPTER 5. DIMENSIONALITY REDUCTION 46

nodes such that the deviation from the centroid corresponds to the expected distance

from their neighbours. In anm-dimensional representation the location of nodes along

each axis k are allowed to deviate from the centroid proportional to the importance

of the axis and the dissimilarity between i and j. Formally, the location of node i

along axis k is given by xki = ∑
j∈N(i) pijx

k
j +∑

j∈N(i) pijδij
(xki−x

k
j)

||xi−xj || . We now prove this

fact. First, we compute the derivative of equation (5.1) with respect to the position

of a node i along an axis k denoted by xki .

∂E

∂xki
= 2

∑
j∈N(i)

wij(δij − ||xi − xj||)
1
2((xi − xj)T (xi − xj))−

1
2 2(xki − xkj)

= 2
∑

j∈N(i)
wij(δij − ||xi − xj||)||xi − xj||−1(xki − xkj)

= 2
∑

j∈N(i)
wij(δij||xi − xj||−1 − 1)(xki − xkj) (5.17)

By setting the gradient in equation (5.17) to zero we obtain

2
∑

j∈N(i)
wij(δij||xi − xj||−1 − 1)(xki − xkj) = 0

∑
j∈N(i)

wijδij||xi − xj||−1(xki − xkj) =
∑

j∈N(i)
wij(xki − xkj)

xki =
∑

j∈N(i)
pijx

k
j +

∑
j∈N(i)

pijδij
(xki − xkj)
||xi − xj||

The position of xik is exactly E[δij] from the weighted centroid of the node’s neighbours

in the 1-dimensional case whenever sign(xki − xkj) is either positive or negative for all

j for a fixed i. However, in the general setting where not all sign(xi−xj) are positive

or negative the location of node i node deviates from the centroid by the difference

between weighted positive and negative terms. The location of the neighbours of

i was assumed to be fixed to provide the interpretation of how the position of i is

determined. However, in the case of spectral graph drawing the location of all i are

simultaneously determined and in the case of stress minimization it depends on the

minimization algorithm.

CHAPTER 5. DIMENSIONALITY REDUCTION 47

5.3 Principal Component Analysis

Principal Component Analysis (PCA) is a well-known dimensionality reduction algo-

rithm used to represent data in smaller number of uncorrelated dimensions of varia-

tions. The property of low-dimensional space obtained using PCA can be character-

ized in three equivalent ways. They are i) maximizes the variance of the projection

of the input data on the low-dimensional space, ii) maximizes the Frobenius norm of

the projection on the low-dimensional space, or iii) minimizes the Frobenius norm of

the residuals of the projection onto the low-dimensional space.

Let X ∈ Rm×n be a matrix of m elements in Rn and the columns of X are zero

centered. The singular value decomposition of X is given by X = UΣV T where U, V

and Σ such that UΣ2UT = XXT and V Σ2V T = XTX. The representation of X in

the basis is obtained by projecting X onto the columns of V , (V TXT)T = XV . Since

X = UΣV T , XV = UΣ.

By noting that the representation of X in an orthonormal basis of eigenvectors

given by UΣ, we obtain the interpretation that the Frobenius norm of X is the

Frobenius norm of Σ. This can be verified by noting that orthogonal transformations

preserve length and U and V are orthogonal matrices. Since, ||X||2F = ||UΣ||2F =∑n
i=1 Σ2

ii||Ui|| = ∑n
i=1 Σ2

ii where Uk the kth column of U . Thus, in order to find a

k-dimensional space which maximizes the Frobenius norm of the projection of X, the

first k columns of V corresponding to the k largest singular values have to be chosen.

5.3.1 Equivalence of PCA and cMDS

Let X ∈ Rm×n be m objects in Rn. When the columns of X is not centered on

0, it is centered on 0 in both PCA and cMDS (equation 5.6). Hence, without loss

of generality, we assume that the columns of X are centered on 0. PCA performs

the spectral decomposition on the covariance matrix XTX ∈ Rn×n whereas classical

MDS performs spectral decomposition on the scalar product matrix XXT ∈ Rm×m.

CHAPTER 5. DIMENSIONALITY REDUCTION 48

However, the solution produced by PCA on X and cMDS on the squared distances

obtained from X is the same. We prove this by first performing the singular value

decomposition ofX = UΣV T for U, V and Σ such that UΣ2UT = XXT and V Σ2V T =

XTX. As discussed in the sections 5.1.2 and 5.3, the solution obtained from cMDS is

UΣ and the solution of PCA is given by XV or equivalently UΣ. Thus, the solution of

performing PCA on X or performing cMDS on the squared distances matrix obtained

from X are the same. Thus PCA can be viewed as an approach to find an embedding

space which preserves the pairwise distances.

5.3.2 Spectral Graph Drawing and PCA Whitening

In this section, we formalize the intuition for why spectral graph drawing is inadequate

to obtain embeddings that preserve given pairwise distances. Let L ∈ Rm×m. The

spectral decomposition of L is given by L = UΛUT . In order to study the properties

of the graph drawing obtained from U , we construct a different matrix X related to

U and use X to describe the properties of U .

Let X ∈ Rm×n for some n such that X = UΣV T . Thus, X is any arbitrary matrix

whose right eigenvectors are given by U . PCA on X is given by UΣ. Therefore, we

can write U as U = UΣΣ†. This corresponds to an operation called PCA whitening

or sphering, used to transform the variance along each axis to be 1. Thus, using only

the eigenvectors of L causes all the axis to have the same variance. As a result, the

scale of axes are discarded. For example, the representation of an ellipse using only

the eigenvectors is a circle as shown in Figure 5.1.

CHAPTER 5. DIMENSIONALITY REDUCTION 49

(a) Data (b) PCA (c) PCA Whitening

Figure 5.1: This figure illustrates that the representations obtained only using eigen-
vectors do not preserve the information about the importance of the axes. Figures
(b) and (c) show the reconstruction of the data obtained from PCA and only using
the eigenvectors, respectively. (c) shows that the variance along both the axes are
the same in the reconstruction of the ellipse from the representations obtained by not
scaling the eigenvectors by the corresponding singular values.

6
Laplacian in Reinforcement Learning

In this chapter we introduce the definition of the Laplacian in reinforcement learning

proposed in Wu, Tucker, and Nachum, 2019. While Wu, Tucker, and Nachum, 2019

discussed the laplacian in continuous state spaces, the discussion here is in the finite

state setting for the sake of clearer exposition.

Let P π be the transition probabilities according to the policy π, and ρ be its

stationary distribution which is assumed to exist. In Wu, Tucker, and Nachum, 2019,

the Laplacian is defined as L = I −D, where I is an identity operator and D is given

by D(u, v) = 1
2
dPπ(s|u)
dρ(v) |s=v + 1

2
dPπ(s|v)
dρ(s) |s=u. The matrix D serves the dual purpose of

being the weightW matrix for the Laplacian L = S−W where S is the degree matrix

Sii = ∑
jWij, and the density of the transition distributions of the random walk on

the graph.

In the finite state setting, we write P and W to denote the use of D for transition

matrix and weight matrix respectively. Let P̂ π denotes the transition probabilities of

the time-reversed markov chain of policy π. The density D(u, v) in Wu, Tucker, and

Nachum, 2019 is given by

D(u, v) = 1
2
P π(v|u)
ρ(v) + 1

2
P π(u|v)
ρ(u) (6.1)

D(u, v) is integrated with respect to measure ρ(v) and so, in the finite state setting,

50

CHAPTER 6. LAPLACIAN IN REINFORCEMENT LEARNING 51

equation (6.1) is multiplied by ρ(v) to obtain

Puv = 1
2P

π(v|u) + 1
2
ρ(v)
ρ(u)P

π(u|v) (6.2)

= 1
2P

π(v|u) + 1
2 P̂

π(v|u) (6.3)

For obtaining W, notice that D(u, v) is integrated with respect to ρ(u) and ρ(v) in

equation (2) of Wu, Tucker, and Nachum, 2019. Therefore, by multiplying equation

(6.1) by ρ(u) and ρ(v) we obtain

Wuv = 1
2ρ(u)ρ(v)P

π(v|u)
ρ(v) + 1

2ρ(u)ρ(v)P
π(u|v)
ρ(u) (6.4)

= 1
2ρ(u)P π(v|u) + 1

2ρ(v)P π(u|v) (6.5)

Note that the transition probabilities P is given by forward transition probabilities P π

with 0.5 probability and the time-reversed P̂ π with 0.5 probability. Such a restriction

is required since transition probabilities of a random walk on an undirected graph

have to be reversible. However, in the RL settting the samples are collected only

using P π. Hence, we assume that P π is reversible. Note that this assumption is a

special case of the transition matrix P given in equation (6.2). Hence, the definition

of Puv is given by Puv = P π(u|v) and W is given by Wuv = ρ(u)P π(v|u).

7
State Embeddings

In this chapter, we introduce the proposed embedding learning method that is suitable

for goal-conditioned reinforcement learning. First, we introduce the objective function

used to learn the embedding space. Next, we discuss the existence of this embedding

space and its connection to the graph Laplacian. Finally, we discuss how the objective

that we introduced is used to approximate this embedding space.

7.1 Proposed Objective Function

In order to be useful in goal-conditioned policies, the distances in the embedding

space must correspond to a quantity that depends on the environment dynamics as

experienced by the agent. So, we first define the distance between states s1 and s2

as half of the commute-time, which we call the action distance. We then propose to

learn an embedding space where the distance between the embeddings of a pair of

states correspond to the action distance between those states.

Formally, let si, sj ∈ S, and define the squared action distance dπ(si, sj) as:

dπ(si, sj) = 1
2m(sj|si) + 1

2m(si|sj) (7.1)

In general, the computation of dπ(si, sj) requires solving linear systems of equation

or equivalently estimating the values of a set of goal-conditioned reward functions.

Therefore, computing dπ exactly is computation intensive. So, we propose to train a

52

CHAPTER 7. STATE EMBEDDINGS 53

neural network to estimate dπ. We learn an embedding function eθ of the state space,

parameterized by vector θ, such that the p-norm between a pair of state embeddings is

close to the action distance between the corresponding states. The objective function

used to train eθ is:

θ∗ = arg min
θ

(||eθ(si)− eθ(sj)||qp − dπ(si, sj))2 (7.2)

In general, ensuring dπ(si, sj) is computed using equal proportion of m(sj|si) and

m(si|sj) leads to practical difficulties. Hence, due to practical considerations, we

redefine action distance to

dπ(si, sj) = ρ(si)m(sj|si)
ρ(si) + ρ(sj)

+ ρ(sj)m(si|sj)
ρ(si) + ρ(sj)

where ρ is the stationary distribution of the Markov chain (we assume the stationary

distribution exists) and m(·|·) is estimated from the trajectories as follows

m(sj|si) = Eτ∼π,t∼t(si,τ),t′=min{t(sj ,τ)≥m}

[
|t− t′|

]
(7.3)

where t(s, τ) is a uniform distribution over all temporal indices of s in τ and the

expectation is taken over trajectories τ sampled from π such that si and sj both

occur in τ . If π is a goal-conditioned policy we also average over goals g provided to

π. In the next section we discuss the existence of the embedding space that preserves

action distance (equation 7.1), its connection to the graph Laplacian, and a practical

approach to approximate it. We call the embeddings learned using the proposed

objective function the distance predictor as the distances in the embedding space

corresponds to the action distance.

The distance predictor can be trained using the trajectories collected by the behav-

ior policy during the policy-learning phase. We call this case the on-policy distance

predictor. We emphasize that the on-policy nature of this distance predictor is inde-

pendent of whether the policies or value functions are learned on-policy. While such

an on-policy distance possesses desirable properties, such as a simple training scheme,

CHAPTER 7. STATE EMBEDDINGS 54

it also has drawbacks. Both the behavior policy and goal distribution will change over

time and thus the distances will be non-stationary.

An important subtlety with the on-policy distance estimators is the difficulty in

setting the threshold ε. Recall that in our setting, the goal is considered to be achieved

and the episode terminated once dπ(s, g) < ε, where ε is a threshold hyperparameter.

This thresholding creates an ε-sphere around the goal, with the episode terminating

whenever the agent enters this sphere. The interaction between the ε-sphere and the

non-stationarity of the on-policy distance function causes a subtle issue that we dub

the expanding ε-sphere phenomenon, discussed in detail in Section 9.2.

An alternative approach to learning the distance function from the trajectories

generated by the behavior policy is to apply a random policy for a fixed number of

timesteps at the end of each episode. The states visited under the random policy are

then used to train the distance function. Since the random policy is independent of the

behavior policy, we describe the learned distance function as off-policy in this case.

The stationarity of the random policy helps in overcoming the expanding ε-sphere

phenomenon of the on-policy distance predictor.

7.2 Existence of the Embedding Space

A random walk on undirected weighted graphs defines a Markov chain and hence,

Markov chain based distances are useful to define dissimilarities between nodes. Specif-

ically, Fouss, Pirotte, and Saerens, 2005 define the similarity of nodes in weighted

undirected graphs using commute times and show the existence of a Euclidean em-

bedding space where the distance between embeddings of nodes i and j correspond

to the square root of the average commute time between them,
√
n(i, j). Such a Eu-

clidean space can be computed using the pseudo-inverse of the graph Laplacian L†,

and the representation of a node i is the ith row of QΛ 1
2 where the columns of Q are

the eigenvectors of L† and Λ is a diagonal matrix of the corresponding eigenvalues.

CHAPTER 7. STATE EMBEDDINGS 55

This is also the solution given by cMDS when D(2)(X)ij = n(i, j) or when Bij = L†ij

as explained below.

(Fouss, Pirotte, and Saerens, 2005; Fouss, Pirotte, Renders, et al., 2007) show that

the average first passage time and the average commute times can be expressed as

m(j|i) =
n∑
k=1

(l†ik − l
†
ij − l

†
jk + l†jj)dkk (7.4)

and

n(i, j) = VG(l†ii + l†jj − 2l†ij) (7.5)

respectively, where VG = ∑n
i=1Dii is the volume of the graph. n(i, j) can be expressed

as

n(i, j) = VG(l†ii + l†jj − l
†
ij − l

†
ij)

= VG(ei − ej)TL†(ei − ej)

= VG(ei − ej)TQΛQT (ei − ej)

= VG(ei − ej)TQΛ 1
2 Λ 1

2QT (ei − ej)

= VG(ei − ej)TQΛ 1
2TΛ 1

2QT (ei − ej)

= VG(xi − xj)T (xi − xj) (7.6)

where xk is Λ 1
2QT ek = (eTkQΛ 1

2)T , the column vector corresponding to the ith row

of QΛ 1
2 . The L2 distance in this embedding space between nodes (i, j), ||xi − xj||,

corresponds to
√
n(i, j) up to a constant factor 1√

VG
, termed euclidean commute time

distance (ECTD).

Since the orthogonal complement of the null-space of the linear transformation is

invertible and a vector of all ones 1 spans the nullspace of L, psedudo-inverse of the

Laplacian is intuitively given by L† = (L + 1
n
11T)−1 − 1

n
11T . Hence, it is easy to

verify that L† is symmetric and the nullspace of L† is also 1. Therefore, L† is double

centered. The resultant matrix of the double centering operation JAJ on any matrix

CHAPTER 7. STATE EMBEDDINGS 56

A are given by

(JAJ)ij

= aij −
1
n

n∑
k=1

aik −
1
n

n∑
m=1

amj + 1
n2

n∑
m=1

n∑
k=1

amk

Using these two facts, it is easy to verify that

− 1
2(JNJ)ij

= VG(L†ij −
1
n

n∑
k=1

L†ik −
1
n2

n∑
k=1

L†kk + 1
n2

n∑
m=1

n∑
k=1

L†mk)

= VGL
†
ij (since L† is double centered)

where N is the matrix of commute times among all pairs of nodes.

Hence, the solution to the embedding space that preserves ECTD given by equa-

tion (7.6) is the same as the one provided by classical MDS by taking N as D(2) or L†

as B. Finally, since that the eigenvectors of L and L† are the same and the non-zero

eigenvalues of L† is the inverse of the corresponding non-zero eigenvalues of L. This

shows that simply using the eigenvectors of the Laplacian is insufficient to obtain

an embedding where the distances are preserved. An empirical comparision of the

embeddings obtained from eigenvectors and the scaled eigenvectors of the Laplacian

to compute distances is shown in 9.4 in a tabular setting.

7.3 Approximation of the Embedding

Space

Even though the embedding space with the desired properties exists, neither the

matrix of pairwise commute times nor L† are available in the RL setting and hence

cMDS cannot be applied. Hence, we approximate the embedding space using metric

MDS (equation 5.2) where δij =
√
n(i, j). Metric MDS provides flexibility in the

choices of f and weights wij. We choose f to be the square function i.e f(x) = x2. This

CHAPTER 7. STATE EMBEDDINGS 57

choice of f stems from practical considerations - it is easier to estimate the average

first passage times between m(j|i) and m(i|j) independently using the trajectories in

RL compared to estimating the commute time n(i, j) =
√
m(j|i) +m(i|j). Hence,

our objective function is of the form

σS(X) =
∑
i<j

wij(||xi − xj||22 −
1
2(m(j|i) +m(i|j)))2 (7.7)

where xi is the embedding of node i. By noting that the quantity in equation (7.7)

is the mean squared error (MSE) and MSE computes the mean of the labels drawn

from a distribution for each input, we can write equation (7.7) as

σS(X) = 1
2

n∑
i=1

n∑
j=1

wij(||xi − xj||22 − k(i, j))2 (7.8)

where k(i, j) = 1m(j|i) + (1 − 1)m(i|j) and 1 ∼ Bern(0.5). Thus, sampling m(j|i)

and m(i|j) in equal proportion provides the required averaging. In practice, however,

it is simpler to sample 1 ∼ Bern
(

ρ(u)
ρ(u)+ρ(v)

)
than Bern(0.5), motivating our definition

in equation (7.3).

For the choice of wij, the discussion of Wu, Tucker, and Nachum, 2019 in Chapter

6 suggests wij = ρ(i)P (j|i). A better choice would be consider the probabilities over

all the time steps instead of the single step transition probability. Hence, we define

the weight for the pair (xi, xj) by wij = ρ(i) + ρ(j), the relative mass of visiting i and

j together.

We note that the mean first passage times m(.|.) are not available and has to be

estimated from the trajectories. In order to do so, first note that m(j|i) = ∑∞
t=0 P

t
ijt

where we use the notation P t
ij to denote the probability of going from state i to j in

exactly n steps for the first time. As a result, the objective function is of the form

σ(X) = 1
2

n∑
i=1

n∑
j=1

wij(||xi − xj||22 − k)2 (7.9)

where k ∼ P t
ij. The quantities in equation (7.9) can be obtained from trajectories

drawn under a fixed policy, thus providing a practical approach to learn the embedding

CHAPTER 7. STATE EMBEDDINGS 58

as given in equation (7.2) with q = 2. When the quantities k are obtained from the

trajectories, in addition to the weights wij on (i, j), each k is weighted by P k
ij. This

emphasizes the shorter distances for each pair of (i, j). As show in 9.5, q in equation

(7.2) provides a mechanism to control the trade-off between the larger and smaller

distances by considering q as a hyperparameter. Thus, setting wkij to ρ(i)P k
ij +ρ(j)P k

ji

provides a practically convenient set of weights and the trade-off it induces can be

mitigated as desired by changing q.

To summarize, Fouss, Pirotte, and Saerens, 2005 shows the existence of the em-

bedding space where the distance between points in the embedding space corresponds

to the square root of the expected commute times between nodes. Therefore, the

existence of the embedding space which preserves the action distance (equation 7.1)

is also guaranteed. The computation of this embedding space requires quantities that

are unavailable in the reinforcement learning setting. Hence, we propose to approx-

imate the embedding space using metric MDS, and provide a set of values for the

weights wij that are meaningful and practically feasible to compute. In 9.5 we discuss

the effect of few choices of f and how it can be used to control the trade-off between

faithfully representing smaller and larger distances.

8
Automatic Curriculum Generation

The characterization of reinforcement learning tasks in terms of sub-goals is an at-

tractive alternative to hand-designing reward functions in complex tasks. The need

for domain knowledge is partly alleviated by automatically learning the distance func-

tions as described in the previous chapter. In this chapter, we address the question

where do the goals come from? in order to realize the full potential of goal-conditioned

reinforcement in removing the requirement for domain knowledge. In addition to au-

tomating the generation of goals, it is desirable to tailor the new goals to the current

abilities of the agent to generate a curriculum for the agent. With this motivation, we

present a simple approach to automatically generate goals that do not require domain

knowledge.

8.1 Related Work

Generating a curriculum that is adapted to the agent’s current abilities has been

proposed in (Sukhbaatar et al., 2018) and (Florensa, Held, Geng, et al., 2018).

(Sukhbaatar et al., 2018) proposes an approach that requires two ’minds’ for the

agent: one to generate goals and the other to achieve those goals, called Alice and

Bob respectively. The reward function for Bob is designed to ensure that Bob reaches

its goal in the least number of steps. On the other hand, the reward function of Alice

59

CHAPTER 8. AUTOMATIC CURRICULUM GENERATION 60

is designed in such a manner so that Alice’s reward is maximized when the goals

given to Bob by Alice are neither too easy nor too difficult. The reward for Alice is

maximized when the number of steps taken by Bob is tM − tA or more, where tM and

tA are the maximum horizon for the task and the number of steps taken by Alice to

reach the goal respectively. The reward is minimized when Bob reaches the goal in

at most as many steps as Alice required. A more straightforward and interpretable

characterization of the task difficulty is proposed in (Florensa, Held, Geng, et al.,

2018).

In (Florensa, Held, Geng, et al., 2018), maintains a working set of goals. The

working set of goals are the goals of intermediate difficulty; they are neither too easy

nor too difficult to achieve. Formally, given hyperparameters Rmin, Rmax ∈ (0, 1),

a goal g is considered to be a Goal of Intermediate Difficulty (GOID) if Rmin <

Vπθ(s0, g) < Rmax, where Vπθ(s0, g) is the undiscounted return. The reward functions

for these goal achieving tasks are sparse binary reward functions; the agent is given

a reward 1 when the goal is achieved and 0 otherwise. Hence, the value function

Vπθ(s0, g) can be interpreted as the probability of reaching g from s0. The algorithm

alternates between the policy learning and goal-selection phases. In the policy-learning

phase, the agent is trained to achieve goals sampled uniformly from the working set of

goals. In the goal-selection phase, the goals that were sampled in the policy learning

phase are labeled as easy, GOID and difficult goals. The labeling of these goals is

either done estimating the probability of achieving those goals successfully either by

performing multiple rollouts for each goal or using the trajectories from the policy

learning phase. Upon labeling the goals, (Florensa, Held, Geng, et al., 2018) train a

generative model, a variant of the Generative Adversarial Network (Goodfellow et al.,

2014) known as LSGAN (Mao et al., 2017), with the GOID goals as the positive

examples and the easy and hard goals as the negative examples. This generative

model is the working set of goals.

CHAPTER 8. AUTOMATIC CURRICULUM GENERATION 61

8.2 Goal Generation with Action Noise

Using a generative model as proposed in (Florensa, Held, Geng, et al., 2018), in-

troduces additional complexity and may generate infeasible goals. When a learned

distance function is used to determine whether the specified goal has been achieved,

the incorrect predictions made by the distance predictor due to incorrect generaliza-

tion may cause infeasible goals to be erroneously marked as achieved. As a result, the

generative model is trained to generate a similar set of infeasible goals. This results

in wasting samples attempting to train the agent to reach infeasible goals.

In this section, we propose an alternative to using a generative model to gener-

ate new goals that does not suffer from the problem of generating infeasible goals.

We propose an approach to generate new goals in the following manner. When the

specified goals have been achieved in the policy learning phase, the a set of states

are generated by applying random actions for a fixed horizon without terminating

the episode. The candidate set of GOID goals are then generated by uniformly sam-

pling from this collection of states. We describe how this candidate set of goals are

integrated into the current work set of goals in the next section. (Florensa, Held,

Wulfmeier, et al., 2017) uses a similar approach to generate goals, but in the context

of generating a set of start states growing outward from a fixed goal state. The part of

the trajectory generated under the random policy is not used for policy optimization.

Generating goals in this manner avoids the requirement of arbitrary environment

resets, which is a requirement in (Florensa, Held, Wulfmeier, et al., 2017). This makes

our method applicable in real-world tasks where arbitrary environment resets are not

possible. This approach of goal generation combines with the off-policy distance

predictor as the distance predictor can be trained with these trajectories. This results

in a curriculum learning procedure for goal-conditioned policies that requires minimal

domain knowledge and works nicely with the learned distances.

CHAPTER 8. AUTOMATIC CURRICULUM GENERATION 62

8.3 Goal Buffer

In this section, we describe the mechanism to store the working set of goals and

how the new candidate GOID goals are integrated into the current working set of

goals. First, we begin with describing the desired properties of the mechanism to

store the GOID goals: i) Non-Stationarity: We require a non-stationary process to

generate goals that are suited to the agent’s current capabilities, and ii) Stability:

Avoid replacing the entire collection of current working set of GOID goals with a

new set working after every policy learning phase. Otherwise, this will cause the

working set of goals to only contain the goals that are more likely under the marginal

distribution of current policy. These two properties are satisfied by using a fixed size

queue with the restriction that only a random subset of the queue are replaced with

the new candidate goals.

9
Experiments

The objective of the experiments is two fold. In the first of experiments, we determine

whether the requirement for domain knowledge in the form of distance function can

be removed by learning the distance functions using the proposed embedding space.

In the second set of experiments, we determine whether the automatic goal generation

using only the knowledge of the action space is effective. In the first set of experiments,

we experiment in the following 3 scenarios: i) when the goal space is known apriori -

(x, y) goal space, ii) the goal space is unknown but only a subset of the state-space is

the desired set of goals, and iii) the goal space is unknown and the entire state space

is the space of desired goals. These experiments are presented in the control setting

i.e when the agent learns the policy. To determine whether the proposed approach to

scales to higher dimensional inputs where the goal space is not embedded in the state

space, we use test our method with the image inputs. This experiment is performed

in the batch setting. In the goal generation experiments, the goals are generated in

the (x, y) goal space.

The experiments are presented in 3 Mujoco Todorov, Erez, and Tassa, 2012 envi-

ronments. The MuJoCo environments are robotics simulations with continuous state

and action spaces with complex dynamics. The first environment is a maze that re-

sembles the shape of 8. A point-mass agent placed in this maze learns to navigate the

maze using a two-dimensional action space. The state space of the point-mass agent

63

CHAPTER 9. EXPERIMENTS 64

is a 4-dimensional vector representing the agent’s (x, y) coordinates along with the

velocities in those directions. The actions control the acceleration of the agent in these

two directions. In the other two environments, the agent is a four-legged robot that

resembles an ant. The state space for the ant agent is 41-dimensional denoting the

(x, y, z) position of the center of mass of the torso along with the angles and angular

velocities of the joints of the legs. The action-space is 8-dimensions which control the

torque applied to each of the joints. We test the ant agent in two environments, the

first environment is a ’U’ shaped maze and the second environment is an open room.

Further discussion of our environments can be found in Florensa, Held, Geng, et al.,

2018 and Duan et al., 2016.

9.1 Control Tasks

We demonstrate the on-policy and the off-policy approaches to learning the distance

predictor. The algorithm alternates between the distance learning and the policy

learning phases. In the distance learning phase, the samples collected either on-policy

or off-policy is used to train a neural network to learn an embedding space is used

to estimate the distances. In the policy learning phase, a policy is learned using

policy gradient methods or value function based methods. In the case of off-policy

distance predictor, additionally a batch of states are collected using a random policy

after the specified goals have been achieved. Using the insight that it is sufficient

for the distance predictor to be useful for the regions that are more likely under

the current policy, we are able to bootstrap our distance predictor. The distance

predictor is learned using a siamese network Bromley et al., 1993 one hidden layer

with 64 hidden units. The output embedding size is 20. To evaluate the progress

of the agent, we measure a quantity called the coverage. The coverage measures the

fraction of the maze that can be successfully reached. To measure the coverage, the

maze is discretized into grids and the goal is set to the center of the grid. During

CHAPTER 9. EXPERIMENTS 65

evaluation, the threshold is set in the L2 space. The threshold values are set to 0.3

and 1 for the point-mass and the ant agents respectively. To measure the probability

of success for each grid, a fixed number of rollouts is used.

9.1.1 XY Goal Space

In this experiment, the goal space is the (x, y) coordinates of the agent’s center-of-

mass (i.e. a subspace of the state space). The results in this experiments are compared

to the baseline approach of Florensa, Held, Geng, et al., 2018. The distance function

in the baseline is the L2 distance. The threshold for termination is the same in the

training and evaluations phases in the baseline. As shown in Figure 9.1, the learned

distances perform comparably to the baseline without using domain knowledge.

Point Mass Maze Ant Free Ant

Figure 9.1: Coverage plots for the (x, y) goal space
.

9.1.2 Full State Space as Goal Space

In this experiments, we consider the settings where the goal space is not known apriori.

Therefore, the distance function is learned using the full state space. With the point-

mass agent, the desired set of goals is the same the entire state space. Thus, the

agent has to achieve all possible configurations of the state space. Since the ant agent

CHAPTER 9. EXPERIMENTS 66

has a higher dimensional state space, we only consider a subset of the state space as

the goal space. This subset of desired goals correspond to the stable pose of the ant

centered on each of the (x, y) positions on the grid. The distance predictor is trained

using the entire states in both of these settings. The results in these two settings are

shown in 9.2.

The progress of the point-mass agent is diminished compared to the (x, y) goal

space as the agent has to achieve the specified configuration of the velocities for the

position. The progress by ant agent suggests that the learned distances are able to

generalize to unseen states as the distance predictor is trained on the states visited by

a policy and it is unlikely to encounter the stable states which are used as the goals

during the evaluation phase.

Point Mass Maze Ant Free Ant

Figure 9.2: Coverage plots for the full goal space
.

Figure 9.3 shows the distances estimated by the distance predictor in the Point

Mass and Maze Ant environments in (x, y) and full goal spaces respectively. Figure

9.4 visualizes the distances estimated on a set of reference states in the Maze Ant envi-

ronment in full goal space. We observe that in all experiments, including the set with

the (x, y) goal space, the on-policy and the off-policy methods for training the dis-

tance predictor performed similarly. In section 9.2 we study the qualitative difference

between the on-policy and off-policy methods for training the distance predictor.

CHAPTER 9. EXPERIMENTS 67

Figure 9.3: Predicted action distance between a reference state and states along a
trajectory in Point Mass (left) and Maze Ant (right).

Figure 9.4: Predicted action distance between stabilized reference states and all other
states in the Ant Maze environment in full goal space. Each subplot uses a different
reference state marked a blue dot. The reference states are chosen near the starting
states.

CHAPTER 9. EXPERIMENTS 68

9.1.3 Hyperparameters

The distance predictor is a MLP with 1 hidden layer and 64 hidden units and ReLU

activation. We initialize distance predictor by training on 100, 000 samples collected

according to the randomly initialized policy for 50 epochs. The starting position is not

randomized. In subsequent iterations of our training procedure the MLP is trained

for one epoch. The learning rate is set to 1e-5 and mini-batch size is 32. The distance

predictor is trained after every policy optimization step using either either off-policy

or the on-policy samples. The embeddings are 20-dimensional and we use 1-norm

distance between embeddings as the predicted distance.

The GoalGAN architecture and its training procedure and the policy optimization

procedure in our experiments are similar to Florensa, Held, Geng, et al., 2018. Similar

to the distance predictor, GoalGAN is trained initially with samples generated by a

random policy. The GAN generator and discriminator have 2 hidden layers with

264 and 128 units respectively with ReLU non-linearity and the GAN is trained

for 200 iterations after every 5 policy optimization iterations. A component-wise

gaussian noise of mean zero and variance 0.5 are added to the output of the GAN

similar to Florensa, Held, Geng, et al., 2018. The policy network has 2 hidden layers

with 64 hidden units in each layer and tanh non-linearity and is optimized using

TRPO Schulman et al., 2015 with a discount factor of 0.99 and GAE of 1. The ε

value was set to 1 and 60 with L2 and the learned distance, respectively, in the Ant

environments and 0.3 and 20 for L2 and learned distance, respectively, for the Point

Mass environments. In order to determine the first occurrence of a state, we use a

threshold of 1e− 4 in the state space. This value is not tuned.

The hyperparameter for ε and the learning rate were determined by performing

grid search with ε values 50, 60 and 80 (Maze Ant) and 20, 30 (Point Mass) and the

learning rates of 1e-3, 1e-4, 1e-5 in the off policy setting. For the sake of simplicity we

use the same ε for the on-policy and off-policy distance predictors in our experiments.

CHAPTER 9. EXPERIMENTS 69

All the plots show the mean and the confidence interval of 95% for all our experiments

using 5 random seeds. Our implementation is based on the github repository for

Florensa, Held, Geng, et al., 2018, located at https://github.com/florensacc/

rllab-curriculum.

9.2 Expanding ε-sphere

We discuss the qualitative differences between the on-policy and off-policy schemes

for training the distance predictor. Since the goal is considered achieved when the

agent is within the ε-sphere of the goal, the episode is terminated when the agent

reaches the boundary of the ε-sphere. As the learning progresses and the agent learns

a shortest path to the goal, the agent only learns a shortest path to a state on the

boundary of the ε-sphere of the corresponding goal. In this scenario, the path to

the goal g from any state within the ε-sphere of g under the policy conditioned on

g need not necessarily be optimal since such trajectories are not seen by the policy

conditioned on that specific goal g. However, the number of actions required to reach

the goal g from the states outside the ε-sphere along the path to the goal decreases

as a result of learning a shorter path due to policy improvement. Therefore, as the

learning progresses until an optimal policy is learned, the number of states from which

the goal g can be reached in a fixed number of actions increases, thus resulting in an

increasing the volume of the ε-sphere centered on the goal for a fixed action distance

k, when using on-policy samples to learn the distance predictor.

This phenomenon is empirically illustrated in the top row in Fig. 9.5. For a fixed

state g near the starting position, the distance from all other states to g is plotted.

The evolution of the distance function over iterations shows that for any fixed state s,

dπ(s, g) gets smaller. Equivalently, the ε-sphere centered on g increases in volume. In

contrast, the bottom row in Fig. 9.5 illustrates the predictions made by an off-policy

distance predictor; in that case, the dark region is almost always concentrated densely

https://github.com/florensacc/rllab-curriculum
https://github.com/florensacc/rllab-curriculum

CHAPTER 9. EXPERIMENTS 70

near g, and the volume of the ε-sphere exhibits significantly less growth.

Since the agent does not receive training for states that are within the ε-sphere

centered at a goal g, it is desirable to keep the ε-sphere as small as possible. One way

to do this would be to employ an adaptive algorithm for choosing ε as a function of

g and the agent’s estimated skill at reaching g; as the agent gets better at reaching

g, ε should be lowered. We leave the design of such an algorithm for future work,

and propose the off-policy scheme as a practical alternative in the meantime. We

note that this phenomenon is not observed in the visualization in the full goal space,

possibly due to the stabilization of the ant during evaluation.

10 20 50 75 100 120 150 200

training iterations

Figure 9.5: Predictions of the distance predictor trained with on-policy (top) and
off-policy (bottom) samples in Maze Ant with (x, y) goal space illustrating how the
predictions evolve over time. Darker colors indicate smaller predicted distance and
the small blue dot indicates the reference state.

CHAPTER 9. EXPERIMENTS 71

9.3 Pixel Inputs

To study whether the proposed method of learning a distance function scales to high-

dimensional inputs, we evaluate the performance of the distance predictor using pixel

representation of the states. This experiment is performed in the batch setting. Sim-

ilar to the pretraining phase of Wu, Tucker, and Nachum, 2019, the embeddings are

trained using sample trajectories collected by randomizing the starting states of the

agent. Each episode is terminated when the agent reaches an unstable position or

100 time steps have elapsed. Figure 9.6 shows the distance estimates of the distance

predictor in this setting. For qualitative comparison, we also experimented with the

approach proposed in Wu, Tucker, and Nachum, 2019 with various choices of hyper-

parameters.

Figure 9.6: Pixel space (batch setting) respectively. Closer states are darker. Each
subplot uses a different reference state shown as a blue dot. Full heatmap is shown
in Figure 9.10.

The distance predictor is neural network with 4 convolution layers with 64 channels

and kernel size of 3 in each layer with strides (1, 2, 1, 2) followed by 2 fully connected

layers with 128 units in each layer and the output layer has 32 units. We used relu

non-linearity along with batchnorm. The learning rate was set to 5e-5 and Adam

Kingma and Ba, 2014 optimizer. The network was trained for 50 epochs with p = 2

and q = 1. The top-down view of the maze ant is shown in Figure 9.7. The results

CHAPTER 9. EXPERIMENTS 72

Figure 9.7: Top-down view of the Maze Ant. The RGB image scaled to 32× 32 is the
input in the pixel tasks.

with the approach of Wu, Tucker, and Nachum, 2019 are shown in Figures 9.8 and

9.9. The training setup is the same as described in section 9.3. We uniformly sample

the states in each trajectory (hence, λ is approximately 1). As β is increased (better

approximation of the spectral objective objective), the points that are predicted close

in almost all of the reference points resembles the body of the ant in the stable position

(Figure 9.7) centered on nearby points.

When used in an online setting, the negative sampling in Wu, Tucker, and Nachum,

2019 could be problematic especially when bootstrapping (without arbitrary environ-

ment resets). In contrast, our objective function does not require negative sampling

and only uses the information present within a trajectory, making it more suitable for

online learning.

CHAPTER 9. EXPERIMENTS 73

((a)) β = 0.5 ((b)) β = 1

((c)) β = 2 ((d)) β = 6

Figure 9.8: Laplacian in RL using pixel inputs. Higher β better approximates spectral
graph drawing objective. LR = 1e− 4

CHAPTER 9. EXPERIMENTS 74

((a)) β = 0.5 ((b)) β = 1

((c)) β = 2 ((d)) β = 6

Figure 9.9: Laplacian in RL using pixel inputs. Higher β better approximates spectral
graph drawing objective. LR = 5e− 5

CHAPTER 9. EXPERIMENTS 75

Figure 9.10: Full heatmap of our approach using pixel inputs. Our approach does not
require negative sampling.

CHAPTER 9. EXPERIMENTS 76

9.4 Comparison of Spectral

Embeddings and Scaled Spectral

Embeddings

In this section we compare the embeddings obtained using the eigenvectors of the

Laplacian (spectral embedding) and the embeddings obtained by scaling the eigen-

vectors by the inverse of square root of the corresponding eigenvalues (scaled spectral

embedding). We perform this comparison in two mazes with 25 states. A transition

from each node to the 4 neighbours in the north, south, east and west directions are

permitted, with equal probabilities in the first maze (figure 9.12) and, north and east

with 0.375 and south and west with 0.125 probabilities in the second maze (figure

9.13). We choose the state corresponding to (2, 2) as the center and the distance

from this state to all the other states are plotted. The first two columns in figures

9.12 and 9.13 correspond to spectral embedding and scaled spectral embedding re-

spectively. The third column corresponds to the ground truth
√
n(i, j) computed

analytically from the mean first passage times computed as Mij = Zjj−Zij
ρ(j) where

Z = (I −P + 1ρT)−1. The distances produced by spectral embedding are multiplied

by the ratio of maximum distance of scaled spectral embedding and the maximum

distance of spectral embedding to produce a similar scale for visualization. The Lapla-

cian is given by L = D −W with W given by equation (6.4) and D is the diagonal

matrix with stationary probabilities on the diagonal.

As seen in both the Figures 9.12 and 9.13, increasing the size of the embedding

dimensions of scaled spectral embeddings better approximates the commute-time dis-

tance. The same cannot be said for the approximation given by spectral embeddings.

In the first maze (Figure 9.12), the approximation gets better until the embedding

size of 13 and then deteriorates. When the objective is to find an lower-dimensional

approximation of the state space, the choice of the embedding size is treated a hyper-

CHAPTER 9. EXPERIMENTS 77

parameter and hence one might be tempted to consider this as hyperparameter tuning.

However, as shown in the second maze (Figure 9.13), when the environment dynamics

are not symmetric, the effect is pronounced to the extent that there is no single choice

of the embedding size for the spectral embeddings that best preserves the distances of

the nearby states and the faraway states. Even in the case when the embedding size

is 3, the spectral embeddings are markedly different from scaled spectral embeddings

as the states (0, 3), (0, 4), (1, 4) are marked equidistant from the reference state by the

spectral embeddings. A comparison of the RMSE error of spectral embeddings and

scaled spectral embedding is provided in Figure 9.11. The difference between spectral

embeddings and scaled spectral embeddings is blurred in the uniform transitions case

since the eigenvalues are similar. In the non-uniform transitions case, the difference

between spectral embeddings and scaled spectral embeddings are evident since the

eigenvalues are very dissimilar. Note that similar eigenvalues means the correspond-

ing dimensions have similar weights; scaling by a (approximately) constant - scaled

spectral embedding approach - doesn’t cause significant difference.

We finally note that our objective is not find a low-dimensional embedding of the

state space but to find an embedding that produces a meaningful distance estimate.

Scaled spectral embeddings are appropriate for this purpose since the accuracy of

the distance estimates improves monotonically with an increase in the number of

dimensions.

CHAPTER 9. EXPERIMENTS 78

((a)) ((b))

Figure 9.11: The square root of commute times from the center state (2, 2) to all
other states is taken as the reference. RMSE of distances obtained from spectral and
scaled spectral embeddings is plotted for (a) Maze with uniform transition probabili-
ties and (b) Maze with non-uniform transition probabilities. The distances obtained
from spectral embeddings are scaled by the ratio of maximum distance from scaled
spectral embeddings and that of spectral embeddings; this is done to map the spectral
embeddings to the same scale as square root of commute times.

CHAPTER 9. EXPERIMENTS 79

((a)) 1 ((b)) 3

((c)) 5 ((d)) 7

((e)) 9 ((f)) 11

((g)) 13 ((h)) 15

((i)) 17 ((j)) 19

((k)) 21 ((l)) 24

Figure 9.12: Visualization of the distance from state (2, 2) to all other states using
different embedding sizes produced by spectral embedding(first column) and scaled
spectral embedding(second column) along with the ground-truth computed analyti-
cally(third column). The transition from each state to its neighbours are uniformly
random. Spectral embedding and scaled spectral embeddings are reasonably similar
upto 11 dimensions. The distance estimate of spectral embeddings deteriorates as
many ’less informative’ dimensions corresponding to large eigenvalues are added and
weighed with as much importance as the ’more informative’ dimensions given by small
eigenvalues.

CHAPTER 9. EXPERIMENTS 80

((a)) 1 ((b)) 3

((c)) 5 ((d)) 7

((e)) 9 ((f)) 11

((g)) 13 ((h)) 15

((i)) 17 ((j)) 19

((k)) 21 ((l)) 24

Figure 9.13: The transition from a state to its neighbours in north and east are with
probability 0.375 and in south and west are with probability 0.125. The choice of
addition of a dimension to spectral embedding presents a trade-off between preserving
the previous estimate and improving the estimate of a closer state. In contrast, the
scaled spectral embedding improves with the addition of every dimension.

CHAPTER 9. EXPERIMENTS 81

9.5 Effect of q

We empirically demonstrate that increasing q increases the effect of larger distances.

In order to obtain the same scale of measurements, the distance in the embedding

space are raised to the power q. We show the effect of q for values 0.5, 1, 2, 4. It is

clearly evident that increasing q increases the radius and the granularity of distance

between points that are near and far are lost. The reason for is suggested in Borg

and Groenen, 2006 (section 11.3). Increasing q increases the weight given to larger

distances. For instance, when q = 2, the stress is approximately 4δ2
ij(δij − dij)2

where δij =
√
n(i, j)

1
2 since the target dissimilarity can be rewritten as δ

1
q

ij

q

. The qth

root of the δij decreases the granularity of the difference between near and far states

and the larger weighting term results in overweighting sporadic examples causing an

increase in radius. Similarly, it can be shown that when q = 4, the stress is given by

16δ6
ij(δij − dij)2 where δij =

√
n(i, j)

1
4 .

CHAPTER 9. EXPERIMENTS 82

((a)) q = 0.5 ((b)) q = 1

((c)) q = 2 ((d)) q = 4

Figure 9.14: We study the effect of q on the radius and degree of closeness of the ant
agent in the free maze. This shows that q is easy to tune and provides a straightfor-
ward mechanism to scale the distances. A similar effect is also observed in the other
environments and with pixel inputs.

CHAPTER 9. EXPERIMENTS 83

9.6 Effect of dimension size

The discussion in section 9.4 suggests that increasing the embedding dimensions mono-

tonically increases the quality of distance estimates in the scaled spectral embeddings

unlike spectral embeddings. We show this phenomenon using the pixel inputs in

Figures 9.15 Wu, Tucker, and Nachum, 2019 and 9.16 (our method).

CHAPTER 9. EXPERIMENTS 84

((a)) 16 ((b)) 32

((c)) 64 ((d)) 128

Figure 9.15: The effect of size of embeddings using the objective of Laplacian in RL
with pixel inputs for LR = 1e − 4 and β = 1. The quality of the approximation of
the distance drops after 32 dimensions.

CHAPTER 9. EXPERIMENTS 85

images/pixel_task/ours/ours_16_1.pdf

((a)) 16 ((b)) 32

((c)) 64 ((d)) 128

Figure 9.16: Increasing the embedding size in our approach improves the distance
estimates.

CHAPTER 9. EXPERIMENTS 86

9.7 Generating Goals Using Action

Noise

We compare the proposed goal generation approach with GoalGAN Florensa, Held,

Geng, et al., 2018 in the (x, y) goal space using the L2 distance. The results shown in

Fig. 9.17 demonstrates that the performance of our approach is on-par with to that

of GoalGAN while not requiring the additional complexity introduced by the GAN.

The evolution of the working set of goals maintained by our algorithm for Maze Ant is

visualized in Fig. 9.18. Though our approach requires additional environment interac-

tions, it does not necessarily have a higher sample complexity compared to GoalGAN

in the case of indicator reward functions. This is because the goals generated by Goal-

GAN are not guaranteed to be feasible (unlike our approach); trajectories generated

for unfeasible goals will receive 0 reward and will not contribute to learning.

((a)) Maze Ant ((b)) Free Ant

Figure 9.17: Comparing the proposed goal generation algorithm against GoalGAN.

CHAPTER 9. EXPERIMENTS 87

Figure 9.18: Evolution of the goals generated by our goal generation approach (top).
A sample of goals so-far encountered (bottom), color-coded according to estimated
difficulty: green are easy, blue are GOID and red are hard.

10
Conclusion and future work

We have presented an approach to learn an embedding space for goal states that ap-

proximates a theoretically motivated embedding, with the property that the distance

between states in the embedding space is proportional to the average commute time

between them. We discussed the connection between this embedding space and clas-

sical multi-dimensional scaling, and the unnormalized graph Laplacian of the MDP’s

state transition graph. As seen in the experiments, the approximation of this embed-

ding space using metric MDS leads to emphasis on states that are close. We illustrated

how this effect can be mitigated by tuning the algorithm’s hyperparameter, q. We

used the learned embedding space as a goal space in which distance is calculated for

goal-conditioned policies and we discussed the phenomenon of expanding the ε-sphere.

The proposed goal generation procedure results in an effective curriculum generation

procedure for the tasks considered. The experiments performed on complex simulated

robotic tasks demonstrate the usefulness of our approach. We believe that our ap-

proach makes a significant step towards building reinforcement learning agents with

minimal domain knowledge.

In this thesis, we have studied the usefulness of the proposed embedding only

for goal-conditioned policies. We suspect that the benefits of our method could go

beyond this setup: as a representation suitable for credit assignment, as a way to

provide a good measure for prioritized sweeping or prioritized sampling from the

88

CHAPTER 10. CONCLUSION AND FUTURE WORK 89

replay buffer, which has an interesting connection with mutual information. We leave

these directions, along with further empirical investigations, for future work.

Bibliography

Amari, Shun-Ichi (Feb. 1998). “Natural Gradient Works Efficiently in Learning”. In:

Neural Comput. 10.2, pp. 251–276.

Baranes, Adrien and Pierre-Yves Oudeyer (Jan. 2013). “Active Learning of Inverse

Models with Intrinsically Motivated Goal Exploration in Robots”. In: Robot. Au-

ton. Syst. 61.1, pp. 49–73.

Bellemare, Marc et al. (2016). “Unifying Count-Based Exploration and Intrinsic Mo-

tivation”. In: Advances in Neural Information Processing Systems 29. Ed. by D. D.

Lee et al. Curran Associates, Inc., pp. 1471–1479.

Bengio, Yoshua et al. (2009). “Curriculum Learning”. In: Proceedings of the 26th An-

nual International Conference on Machine Learning. ICML ’09. Montreal, Quebec,

Canada: ACM, pp. 41–48.

Borg, Ingwer and Patrick Groenen (June 2006). “Modern Multidimensional Scaling:

Theory and Applications”. In: Journal of Educational Measurement 40, pp. 277–

280.

Brémaud, Pierre (1999). Markov chains: Gibbs fields, Monte Carlo simulation, and

queues. Berlin; New York: Springer-Verlag Inc.

Bromley, Jane et al. (1993). “Signature Verification Using a “Siamese” Time Delay

Neural Network”. In: Proceedings of the 6th International Conference on Neural

90

BIBLIOGRAPHY 91

Information Processing Systems. NIPS’93. Denver, Colorado: Morgan Kaufmann

Publishers Inc., pp. 737–744.

Burda, Yuri, Harri Edwards, Deepak Pathak, et al. (2019). “Large-Scale Study of

Curiosity-Driven Learning”. In: ICLR.

Burda, Yuri, Harrison Edwards, Amos Storkey, et al. (2019). “Exploration by random

network distillation”. In: International Conference on Learning Representations.

Duan, Yan et al. (20–22 Jun 2016). “Benchmarking Deep Reinforcement Learning

for Continuous Control”. In: Proceedings of The 33rd International Conference

on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger.

Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA:

PMLR, pp. 1329–1338.

Florensa, Carlos, David Held, Xinyang Geng, et al. (Oct. 2018). “Automatic Goal

Generation for Reinforcement Learning Agents”. In: Proceedings of the 35th In-

ternational Conference on Machine Learning. Ed. by Jennifer Dy and Andreas

Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,

Stockholm Sweden: PMLR, pp. 1515–1528.

Florensa, Carlos, David Held, Markus Wulfmeier, et al. (13–15 Nov 2017). “Reverse

Curriculum Generation for Reinforcement Learning”. In: Proceedings of the 1st

Annual Conference on Robot Learning. Ed. by Sergey Levine, Vincent Vanhoucke,

and Ken Goldberg. Vol. 78. Proceedings of Machine Learning Research. PMLR,

pp. 482–495.

Fouss, Francois, Alain Pirotte, Jean-Michel Renders, et al. (Mar. 2007). “Random-

Walk Computation of Similarities between Nodes of a Graph with Application to

Collaborative Recommendation”. In: IEEE Trans. on Knowl. and Data Eng. 19.3,

pp. 355–369.

Fouss, Francois, Alain Pirotte, and Marco Saerens (2005). “A Novel Way of Com-

puting Similarities Between Nodes of a Graph, with Application to Collaborative

Recommendation”. In: Proceedings of the 2005 IEEE/WIC/ACM International

BIBLIOGRAPHY 92

Conference on Web Intelligence. WI ’05. Washington, DC, USA: IEEE Computer

Society, pp. 550–556.

Gallier, Jean and Jocelyn Quaintance (2017). Algebra, Topology, Differential Calculus,

and Optimization Theory For Computer Science and Machine Learning.

Gansner, Emden R., Yehuda Koren, and Stephen North (2004). “Graph Drawing

by Stress Majorization”. In: Proceedings of the 12th International Conference on

Graph Drawing. GD’04. New York, NY: Springer-Verlag, pp. 239–250.

Ghojogh, Benyamin, Fakhri Karray, and Mark Crowley (2019). “Eigenvalue and Gen-

eralized Eigenvalue Problems: Tutorial”. In: ArXiv abs/1903.11240.

Goodfellow, Ian et al. (2014). “Generative Adversarial Nets”. In: Advances in Neural

Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Asso-

ciates, Inc., pp. 2672–2680.

Graves, Alex et al. (2017). “Automated Curriculum Learning for Neural Networks”. In:

Proceedings of the 34th International Conference on Machine Learning - Volume

70. ICML’17. Sydney, NSW, Australia: JMLR.org, pp. 1311–1320.

Jaderberg, Max et al. (2017). “Reinforcement Learning with Unsupervised Auxiliary

Tasks”. In: International Conference on Learning Representations.

Kaelbling, Leslie Pack (1993). “Learning to Achieve Goals”. In: Proceedings of the

Thirteenth International Joint Conference on Artificial Intelligence. Chambery,

France: Morgan Kaufmann.

Kamada, T. and S. Kawai (Apr. 1989). “An Algorithm for Drawing General Undi-

rected Graphs”. In: Inf. Process. Lett. 31.1, pp. 7–15.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Opti-

mization. Published as a conference paper at the 3rd International Conference for

Learning Representations, San Diego, 2015.

Kingma, Diederik P and Max Welling (2014). “Auto-encoding variational bayes”. In:

International Conference on Learning Representations.

BIBLIOGRAPHY 93

Kobourov, Stephen G. (2012). “Spring Embedders and Force Directed Graph Drawing

Algorithms”. In: CoRR abs/1201.3011.

Koren, Yehuda (2003). “On Spectral Graph Drawing”. In: Proceedings of the 9th An-

nual International Conference on Computing and Combinatorics. COCOON’03.

Big Sky, MT, USA: Springer-Verlag, pp. 496–508.

Kruskal, J. B. (Mar. 1964). “Multidimensional scaling by optimizing goodness of fit

to a nonmetric hypothesis”. In: Psychometrika 29.1, pp. 1–27.

Lillicrap, Timothy P. et al. (2016). “Continuous control with deep reinforcement learn-

ing”. In: 4th International Conference on Learning Representations, ICLR 2016,

San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by

Yoshua Bengio and Yann LeCun.

Luxburg, Ulrike (Dec. 2007). “A Tutorial on Spectral Clustering”. In: Statistics and

Computing 17.4, pp. 395–416.

Mao, X. et al. (Oct. 2017). “Least Squares Generative Adversarial Networks”. In: 2017

IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821.

Mnih, Volodymyr et al. (Feb. 2015). “Human-level control through deep reinforcement

learning”. In: Nature 518.7540, pp. 529–533.

Nachum, Ofir et al. (2019). “Near-Optimal Representation Learning for Hierarchical

Reinforcement Learning”. In: International Conference on Learning Representa-

tions.

Nair, Ashvin et al. (2018). “Visual Reinforcement Learning with Imagined Goals”. In:

Proceedings of the 32Nd International Conference on Neural Information Process-

ing Systems. NIPS’18. Montréal, Canada: Curran Associates Inc., pp. 9209–

9220.

Narvekar, Sanmit, Jivko Sinapov, and Peter Stone (2017). “Autonomous Task Se-

quencing for Customized Curriculum Design in Reinforcement Learning”. In: Pro-

ceedings of the 26th International Joint Conference on Artificial Intelligence. IJ-

CAI’17. Melbourne, Australia: AAAI Press, pp. 2536–2542.

BIBLIOGRAPHY 94

Ng, Andrew Y., Daishi Harada, and Stuart J. Russell (1999). “Policy Invariance Under

Reward Transformations: Theory and Application to Reward Shaping”. In: Pro-

ceedings of the Sixteenth International Conference on Machine Learning. ICML

’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 278–287.

Sammon, J. W. (May 1969). “A Nonlinear Mapping for Data Structure Analysis”. In:

IEEE Trans. Comput. 18.5, pp. 401–409.

Schaul, Tom et al. (2015). “Universal Value Function Approximators”. In: Proceedings

of the 32nd International Conference on Machine Learning, ICML 2015, Lille,

France, 6-11 July 2015, pp. 1312–1320.

Schulman, John et al. (July 2015). “Trust Region Policy Optimization”. In: Proceed-

ings of the 32nd International Conference on Machine Learning. Ed. by Francis

Bach and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille,

France: PMLR, pp. 1889–1897.

Silver, David, Aja Huang, et al. (Jan. 2016). “Mastering the Game of Go with Deep

Neural Networks and Tree Search”. In: Nature 529.7587, pp. 484–489.

Silver, David, Thomas Hubert, et al. (2018). “A general reinforcement learning algo-

rithm that masters chess, shogi, and Go through self-play”. In: 362.6419, pp. 1140–

1144.

Sukhbaatar, Sainbayar et al. (2018). “Intrinsic Motivation and Automatic Curricula

via Asymmetric Self-Play”. In: International Conference on Learning Representa-

tions.

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Intro-

duction. Cambridge, MA, USA: A Bradford Book.

Sutton, Richard S., Doina Precup, and Satinder Singh (Aug. 1999). “Between MDPs

and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learn-

ing”. In: Artif. Intell. 112.1–2, pp. 181–211.

BIBLIOGRAPHY 95

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A physics engine for

model-based control”. In: 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 5026–5033.

Venkattaramanujam, Srinivas, Eric Crawford, et al. (2019). “Self-supervised Learning

of Distance Functions for Goal-Conditioned Reinforcement Learning”. In: CoRR

abs/1907.02998.

Venkattaramanujam, Srinivas, Riashat Islam, and Doina Precup (2019). “Automatic

Curriculum Generation via Task Perturbations in Reinforcement Learning”. In:

TARL workshop, ICLR 2019.

Wu, Yifan, George Tucker, and Ofir Nachum (2019). “The Laplacian in RL: Learning

Representations with Efficient Approximations”. In: International Conference on

Learning Representations.

	Contents
	1 Introduction
	2 Markov Chains
	3 Reinforcement Learning
	3.1 Preliminary Definitions
	3.2 Dynamic Programming
	3.2.1 Policy Evaluation
	3.2.2 Policy Improvement Theorem
	3.2.3 Policy Iteration
	3.2.4 Value Iteration

	3.3 Reinforcement Learning
	3.3.1 Monte Carlo
	3.3.1.1 Monte Carlo with exploring starts
	3.3.1.2 On-policy and Off-policy methods
	3.3.1.3 Off-policy Monte Carlo without Importance Sampling

	3.3.2 Temporal Difference Learning
	3.3.2.1 Sarsa
	3.3.2.2 Q-Learning

	3.3.3 Policy Gradients
	3.3.3.1 REINFORCE and Actor Critic
	3.3.3.2 TRPO

	3.4 Goal Conditioned Reinforcement Learning

	4 Graphs
	4.1 Preliminary definitions
	4.1.1 Directed Graphs
	4.1.2 Undirected Graphs
	4.1.3 Weighted Graphs

	4.2 Graph Laplacian

	5 Dimensionality Reduction
	5.1 Multidimensional Scaling
	5.1.1 Metric MDS
	5.1.2 Classical MDS

	5.2 Graph Drawing
	5.2.1 Stress Minimization
	5.2.2 Spectral Graph Drawing
	5.2.3 Comparison of stress minimization and spectral graph drawing

	5.3 Principal Component Analysis
	5.3.1 Equivalence of PCA and cMDS
	5.3.2 Spectral Graph Drawing and PCA Whitening

	6 Laplacian in Reinforcement Learning
	7 State Embeddings
	7.1 Proposed Objective Function
	7.2 Existence of the Embedding Space
	7.3 Approximation of the Embedding Space

	8 Automatic Curriculum Generation
	8.1 Related Work
	8.2 Goal Generation with Action Noise
	8.3 Goal Buffer

	9 Experiments
	9.1 Control Tasks
	9.1.1 XY Goal Space
	9.1.2 Full State Space as Goal Space
	9.1.3 Hyperparameters

	9.2 Expanding -sphere
	9.3 Pixel Inputs
	9.4 Comparison of Spectral Embeddings and Scaled Spectral Embeddings
	9.5 Effect of q
	9.6 Effect of dimension size
	9.7 Generating Goals Using Action Noise

	10 Conclusion and future work
	Bibliography

