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Abstract
A crucial requirement of goal-conditioned poli-
cies is to be able to determine whether the goal has
been achieved. Having a notion of distance to a
goal is thus a crucial component of this approach.
However, it is not straightforward to come up
with an appropriate distance, and in some tasks,
the goal space may not even be known a priori. In
this work we learn, in a self-supervised manner,
a distance-to-goal estimate which is computed in
terms of the average number of actions that would
need to be carried out to reach the goal. In or-
der to learn the distance estimate, we propose to
learn an embedding space such that the distance
between points in this space corresponds to the
square-root of the average number of timesteps re-
quired to go from the first state to the second and
back, i.e. the commute time between the states.
We discuss why such an embedding space is guar-
anteed to exist and provide a practical method to
approximate it in the online reinforcement learn-
ing setting. Experimental results in a number
of challenging domains demonstrate that our ap-
proach can greatly reduce the amount of domain
knowledge required by existing algorithms for
goal-conditioned reinforcement learning.

1. Introduction
Reinforcement Learning (RL) is a framework for training
agents to interact optimally with an environment. Recent
advances in RL have led to algorithms that are capable of
succeeding in a variety of environments, ranging from video
games with high-dimensional image observations (Mnih
et al., 2013; 2015) to continuous control in complex robotic
tasks (Lillicrap et al., 2016; Schulman et al., 2015). Mean-
while, innovations in training powerful function approxima-
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tors have all but removed the need for hand-crafted state
representation, thus enabling RL methods to work with min-
imal human oversight or domain knowledge. However, one
component of the RL workflow that still requires significant
human input is the design of the reward function that the
agent optimizes.

One way of alleviating this reliance on human input is by
allowing the agent to condition its behavior on a provided
goal (Kaelbling, 1993; Schaul et al., 2015), and training
the agent to achieve (some approximation of) all possible
goals afforded by the environment. A number of algorithms
have recently been proposed along these lines, often making
use of curriculum learning techniques to discover goals and
train agents to achieve them in a structured way (Narvekar
et al., 2017; Florensa et al., 2018). At the end of this process,
the agent is expected to be able to achieve any desired goal.

An important component of this class of algorithm is a
distance function, used to determine whether the agent has
reached its goal; this can also require human input and
domain knowledge. In past work, it has been common
to assume that the goal space is known and use the L2
distance between the current state and the goal. However,
this straightforward choice is not satisfactory for general
environments, as it does not take environment dynamics
into account. For example, it is possible for a state to be
close to a goal in terms of L2 distance, and yet be far from
satisfying it in terms of environment dynamics.

We propose a self-supervised method for learning a distance
between a state and a goal which accurately reflects the
dynamics of the environment. We begin by defining the dis-
tance between two states as the square root of the average
number of time steps required to move from the first state to
the second and back for the first time under some policy π.
To make this distance usable as part of a goal-conditioned
reward function, we train a neural network to approximate
this quantity from data. The distance network is trained on-
line, in conjunction with the training of the goal-conditioned
policy.

The contributions of this work are as follows. i) We propose
a self-supervised approach to learn a distance function, by
learning an embedding with the property that the p-norm
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between the embeddings of two states approximates the
average temporal distance between the states according to
a policy π, ii) we show that our method is approximating
a theoretically motivated quantity and discuss the connec-
tion between our approach and the graph Laplacian, iii) we
demonstrate that the learned distance estimate can be used
in the online setting in goal-conditioned policies, iv) we de-
velop an automatic curriculum generation mechanism that
takes advantage of our distance learning algorithm, and v)
we explain a phenomenon that arises due to learning the dis-
tance function using samples from the behavior policy. Our
method solves complex tasks without prior domain knowl-
edge in the online setting in three different scenarios in the
context of goal-conditioned policies - a) the goal space is
the same as the state space, b) the goal space is given but
an appropriate distance is unknown and c) the state space
is accessible, but only a subset of the state space represents
desired goals, and this subset is known a priori.

2. Related Work
Goal-conditioned RL aims to train agents that can reach
any goal provided to them. Automatic goal generation ap-
proaches such as (Florensa et al., 2018; 2017) focus on au-
tomatically generating goals of appropriate difficulty for the
agent, thereby facilitating efficient learning. These methods
utilize domain knowledge to define a goal space and use L2
distance as the distance function in the goal space. However,
in most tasks the goal space is inaccessible or an appropriate
distance function in the goal space is unknown. There have
been recent efforts on learning an embedding space for goals
in an unsupervised fashion using the reconstruction error
and the L2 distance is then computed in the learned embed-
ding space (Péré et al., 2018; Nair et al., 2018; Sukhbaatar
et al., 2018). The main drawback of these approaches is that
they do not capture the environment dynamics.

(Andrychowicz et al., 2017) and (Rauber et al., 2019) focus
on improving the sample efficiency of the goal-conditioned
policies by relabeling or reweighting the reward from a goal
on which the trajectory was conditioned to a different goal
that was a part of the trajectory. Our method is complemen-
tary to these approaches since they rely on prior knowledge
of the goal space and use the L1 or L2 distance in the goal
space to determine whether the goal has been reached.

Similar to our work, (Savinov et al., 2018) and (Savinov
et al., 2019) trained a network R to predict whether the
distance in actions between two states is smaller than some
fixed hyperparameter k. However, (Savinov et al., 2018)
and (Savinov et al., 2019) were done in the context of su-
pervised learning-based navigation and intrinsic motivation,
respectively, in contrast to our work. (Savinov et al., 2018)
proposed a non-parametric graph based memory module for
navigation where the nodes correspond to landmarks in the

environment and the nodes judged similar by the network
R are connected by an edge; goal-oriented navigation is
performed by using a locomotion network L trained using
supervised learning to reach intermediate way-points se-
lected as a result of localization and planning on the learned
graph. (Savinov et al., 2019) used the network to to provide
agents with an exploration bonus for visiting novel states;
given a state s visited by the agent, an exploration bonus
was provided if the network judged s to be far from the
states in a buffer storing a representative sample of states
previously visited by the agent.

(Ghosh et al., 2019) defines the actionable distance between
states s1 and s2 in terms of expected Jensen-Shannon Diver-
gence between πpa|s, s1q and πpa|s, s2q, where πpa|s, gq
is a fully trained goal-conditioned policy. They then train
an embedding such that the L2 distance between the em-
beddings of s1 and s2 is equal to the actionable distance
between s1 and s2. This differs from our approach in that
we use a different objective for training the distance func-
tion, and, more importantly, we do not assume availability
of a pre-trained goal-conditioned policy; rather, in our work
the distance function is trained online, in conjunction with
the policy.

(Wu et al., 2019) learns a state representation using the
eigenvectors of the Laplacian of the graph induced by a fixed
policy and demonstrates its suitability to reward shaping
in sparse reward problems. Our method aims to learn an
embedding of the states without computing the eigenvectors
of the graph Laplacian. However, the justification of our
approach relies on why eigenvectors of the Laplacian are
insufficient when the distance between the states in the
embedding space is crucial. We discuss the details of this
and the connection to the commute time in sections 4.2 and
A.3. Furthermore, our approach differs by not using negative
sampling; only the information present within trajectories
are used to obtain the embeddings.

3. Background
3.1. Goal-Conditioned Reinforcement Learning

In the standard RL framework, the agent is trained to
solve a single task, specified by the reward function. Goal-
conditioned reinforcement learning generalizes this to allow
agents capable of solving multiple tasks (Schaul et al., 2015).
We assume a goal space G, which may be identical to the
state space or related to it in some other way, and intro-
duce the goal-augmented state space SG “ S

Ś

G. Given
some goal g P G, the policy πpat|st, gq, reward function
rpst, g, atq and value function Vπpst, gq are conditioned on
the goal g in addition to the current state. The objective
is to train the agent to achieve all goals afforded by the
environment.
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We assume the goal space is either identical to or a subspace
of the state space, that all trajectories begin from a single
start state s0, and that the environment does not provide a
means of sampling over all possible goals (instead, goals
must be discovered through experience). Moreover, we
require a distance function dps, gq; agents are given a reward
of 0 at all timesteps until dps, gq ă ε, for hyperparameter
ε P R`, at which point a reward of 1 is provided and the
episode terminates.

3.2. Goal Generation and Curriculum Learning

In order to train agents to achieve all goals in this setting, it
is desirable to have a way of systematically exploring the
state space in order to discover as many goals as possible,
as well as a means of tailoring the difficulty of goals to the
current abilities of the agent (a form of goal-based curricu-
lum learning). An algorithmic framework satisfying both of
these requirements was proposed in (Florensa et al., 2018).
Under this framework, one maintains a working set of goals,
and alternates between two phases. In the policy-learning
phase, the agent is trained (using an off-the-shelf RL algo-
rithm) to achieve goals sampled uniformly from the working
set. In the goal-selection phase, the working set of goals
is adapted to the current abilities of the agent in order to
enable efficient learning in the next policy-learning stage.
In particular, the aim is to have the working set consist of
goals that are of intermediate difficulty for the agent; goals
that are too hard yield little reward to learn from, while
goals that are too easy leave little room for improvement.
Formally, given hyperparameters Rmin, Rmax P p0, 1q, a
goal g is considered to be a Goal of Intermediate Difficulty
(GOID) if Rmin ă Vπθ ps0, gq ă Rmax, where Vπθ ps0, gq
is the undiscounted return.

3.3. Multidimensional scaling

The study of multidimensional scaling (MDS) is concerned
with finding a low-dimensional configuration of objects by
taking as input a set of pairwise dissimilarities between
the objects (Borg & Groenen, 2006). The resulting low-
dimensional configuration has to be such that the distance
in this the low-dimensional configuration between any pair
of objects best preserves the corresponding pairwise dissim-
ilarities provided as input. As the dissimilarities are mapped
to distances in the low-dimensional space, the input dissimi-
larities cannot be arbitrary. They must be symmetric, non-
negative and obey the triangle inequality. The discussion
and notation used in this section follows (Borg & Groenen,
2006).

3.3.1. CLASSICAL MDS

MDS in its original form is now called Classical MDS
(cMDS) or Toegerson scaling. Classical MDS assumes that

the dissimilarities are distances in some Euclidean space.
The embeddings produced by cMDS preserve the input dis-
tances exactly whenever the inputs are Euclidean distances.

Provided with a matrix of pairwise distances D, cMDS pro-
ceeds as follows. First a matrix Dp2q of squared pairwise
distances is formed. Then a matrix B is obtained by double
centering Dp2q, i.e B “ ´ 1

2JD
p2qJ where J “ I ´ 1

n11
T

and 1 is a vector of all ones. B is symmetric and positive-
semidefinite (details in Appendix A.1). Finally, an eigen-
decomposition on B produces B “ QΛQT , where Λ is a
diagonal matrix whose elements are the eigenvalues of B ar-
ranged in descending order and the columns ofQ are the cor-
responding eigenvectors. An embedding X

1

that preserves
the Euclidean distance is then obtained using X

1

“ QΛ
1
2 .

3.3.2. METRIC MDS

Let δij denote the dissimilarity between objects i and j, and
let dijpXq denote a distance metric between the ith and jth

rows of X denoted by xi and xj respectively. Typically, the
distance metric d is the Euclidean distance. xk is the repre-
sentation of the object k provided by X . MDS minimizes a
quantity called stress, denoted by σrpXq, defined as

σrpXq “
ÿ

iăj

wijpdijpXq ´ δijq
2 (1)

where wij ě 0, and wij “ wji. Any meaningful choice of
weights that satisfies these constraints can be used.

In equation (1), δij can be replaced by fpδijq. If f is con-
tinuous, the approach is then called metric MDS. A general-
ization of the stress is defined as

σGpXq “
ÿ

iăj

wijpfpdijpXqq ´ fpδijqq
2 (2)

where fpxq “ x corresponds to the raw stress σr. In general,
metric MDS does not admit an analytical solution. Instead,
it is solved iteratively, and convergence to a global minimum
is not guaranteed.

3.4. Spectral Embeddings of Graphs

Given a simple, weighted, undirected and connected graph
G, the Laplacian of the graph is defined as L “ D ´W
where W is the weight matrix and D is the degree matrix.
The eigenvectors corresponding to the smallest eigenvalues
of the graph Laplacian are used to obtain an embedding
for the nodes and have been shown useful in several ap-
plications such as spectral clustering (Luxburg, 2007) and
spectral graph drawing (Koren, 2003). In spectral embed-
ding methods, a k-dimensional embedding of the node i is
obtained by taking the ith components of the k eigenvectors
corresponding to the k smallest non-zero eigenvalues.
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3.5. Markov Chain based distances

The average first passage time from state i to j is defined
as the expected number of steps to reach j for the first time
after starting from i. We write the average first passage time
mpj|iq recursively as

mpj|iq “

#

0 if i “ j

1`
ř

kPS P pk|iqmpk|iq if i ‰ j

A related quantity, the average commute time npi, jq is
defined as npi, jq “ mpi|jq `mpj|iq. Average commute
time is a distance metric as noted in (Fouss et al., 2005).

4. Method
In this section we introduce an action-based distance mea-
sure for use in trajectory-based reinforcement learning
which captures the dynamics of the environment. We then
present a method for automatically learning an estimator of
that distance using samples generated by a policy π.

4.1. Learned Action Distance

We propose to learn a task-specific distance function where
the distance between states s1 and s2 is defined as half of the
commute-time, which we call the action distance. Defining
the distance in terms of reachability of the states captures the
environment dynamics as experienced by the agent under the
policy π. In order to learn a distance estimator we propose
to learn an embedding such that the distance between the
embeddings of a pair of states is equal to the action distance
between the states. Formally, let si, sj P S, and define the
action distance dπpsi, sjq as:

dπpsi, sjq “
1

2
mpsj |siq `

1

2
mpsi|sjq (3)

In general, dπpsi, sjq is difficult to compute; this is problem-
atic, since this distance is intended to be used for detecting
when goals have been achieved and will be called frequently.
Therefore, we propose to train a neural network to estimate
it. Specifically, we learn an embedding function eθ of the
state space, parameterized by vector θ, such that the p-norm
between a pair of state embeddings is close to the action
distance between the corresponding states. The objective
function used to train eθ is:

θ˚ “ arg min
θ

p||eθpsiq ´ eθpsjq||
q
p ´ d

πpsi, sjqq
2 (4)

In general, ensuring dπpsi, sjq is computed using equal
proportion of mpsj |siq and mpsi|sjq leads to practical diffi-
culties. Hence, due to practical considerations, we redefine
action distance to

dπpsi, sjq “
ρpsiqmpsj |siq

ρpsiq ` ρpsjq
`
ρpsjqmpsi|sjq

ρpsiq ` ρpsjq

where ρ is the stationary distribution of the Markov chain
(we assume the stationary distribution exists) and mp¨|¨q is
estimated from the trajectories as follows

mpsj |siq “ E
τ„π,t„tpsi,τq,t

1“minttpsj,τqěmur|t´t1|s
(5)

where tps, τq is a uniform distribution over all temporal in-
dices of s in τ and the expectation is taken over trajectories
τ sampled from π such that si and sj both occur in τ . If
π is a goal-conditioned policy we also average over goals
g provided to π. In the next section we discuss the exis-
tence of the embedding space that preserves action distance
(equation 3), its connection to the graph Laplacian, and a
practical approach to approximate it.

When used as part of an algorithm to learn a goal-
conditioned policy, the distance predictor can be trained
using the trajectories collected by the behavior policy dur-
ing the policy-learning phase. We call this case the on-policy
distance predictor. We emphasize that the on-policy nature
of this distance predictor is independent of whether the poli-
cies or value functions are learned on-policy. While such
an on-policy distance possesses desirable properties, such
as a simple training scheme, it also has drawbacks. Both
the behavior policy and goal distribution will change over
time and thus the distance function will be non-stationary.
This can create a number of issues, the most important of
which is difficulty in setting the threshold ε. Recall that in
our setting, the goal is considered to be achieved and the
episode terminated once dπps, gq ă ε, where ε is a thresh-
old hyperparameter. This thresholding creates an ε-sphere
around the goal, with the episode terminating whenever
the agent enters this sphere. The interaction between the
ε-sphere and the non-stationarity of the on-policy distance
function causes a subtle issue that we dub the expanding
ε-sphere phenomenon, discussed in detail in Section 5.3.

An alternative approach to learning the distance function
from the trajectories generated by the behavior policy is to
apply a random policy for a fixed number of timesteps at the
end of each episode. The states visited under the random
policy are then used to train the distance function. Since
the random policy is independent of the behavior policy,
we describe the learned distance function as off-policy in
this case. The stationarity of the random policy helps in
overcoming the expanding ε-sphere phenomenon of the on-
policy distance predictor.

4.2. Existence and Approximation of the Embedding
Space

Our approach relies on spectral theory of graphs to ob-
tain a representation of states, similar to (Wu et al., 2019).
We note that the Laplacian L “ D ´ W of (Wu et al.,
2019) in the finite state setting is given by Wuv “
1
2ρpuqP

πpv|uq ` 1
2ρpvqP

πpu|vq and the transition prob-
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abilities Puv “ 1
2P

πpv|uq` 1
2
ρpvq
ρpuqP

πpu|vq (details in A.2).
The random walk on undirected weighted graphs defines
a Markov chain and hence, Markov chain based distances
are useful to define dissimilarities between nodes. Specifi-
cally, (Fouss et al., 2005) define the similarity of nodes in
weighted undirected graphs using commute times and show
the existence of a Euclidean embedding space where the
distance between embeddings of nodes i and j correspond
to the square root of the average commute time between
them,

a

npi, jq. Such a Euclidean space can be computed
using the pseudo-inverse of the graph Laplacian L:, and the
representation of a node i is the ith row of QΛ

1
2 where the

columns of Q are the eigenvectors of L: and Λ is a diagonal
matrix of the corresponding eigenvalues. This is also the so-
lution given by cMDS when Dp2qpXqij “ npi, jq or when
Bij “ L:ij . Further discussion is provided in A.3.

Even though the embedding space with the desired proper-
ties exists, neither the matrix of pairwise commute times
nor L: are available in the RL setting and hence cMDS
cannot be applied. Hence, we approximate the embedding
space using metric MDS (equation 2) where δij “

a

npi, jq.
Metric MDS provides flexibility in the choices of f and
weights wij . We choose f to be the square function i.e
fpxq “ x2. This choice of f stems from practical consid-
erations - it is easier to estimate the average first passage
times between mpj|iq and mpi|jq independently using the
trajectories in RL compared to estimating the commute time
npi, jq “

a

mpj|iq `mpi|jq. Hence, our objective func-
tion is of the form

σSpXq “
ÿ

iăj

wijp||xi´xj ||
2
2´

1

2
pmpj|iq`mpi|jqqq2 (6)

where xi is the embedding of node i. By noting that the
quantity in equation (6) is the mean squared error (MSE)
and MSE computes the mean of the labels drawn from a
distribution for each input, we can write equation (6) as

σSpXq “
1

2

n
ÿ

i“1

n
ÿ

j“1

wijp||xi ´ xj ||
2
2 ´ kpi, jqq

2 (7)

where kpi, jq “ 1mpj|iq ` p1 ´ 1qmpi|jq and 1 „

Bernp0.5q. Thus, sampling mpj|iq and mpi|jq in equal
proportion provides the required averaging. In practice,
however, it is simpler to sample 1 „ Bern

´

ρpuq
ρpuq`ρpvq

¯

than Bernp0.5q, motivating our definition in equation (5).

For the choice of wij , the discussion of (Wu et al., 2019) in
Appendix A.2 suggests wij “ ρpiqP pj|iq. A better choice
would be consider the probabilities over all the time steps
instead of the single step transition probability. Hence, we
define the weight for the pair pxi, xjq by wij “ ρpiq` ρpjq,
the frequency of visiting i and j together. In A.4, we discuss
the weights for the case when mp.|.q is not available and
has to be estimated using the trajectories.

To summarize, (Fouss et al., 2005) shows the existence of
the embedding space where the distance between points
in the embedding space corresponds to the square root of
the expected commute times between nodes. Therefore, the
existence of the embedding space which preserves the action
distance (equation 3) is also guaranteed. The computation of
this embedding space requires quantities that are unavailable
in the reinforcement learning setting. Hence, we propose
to approximate the embedding space using metric MDS,
and provide a set of values for the weights wij that are
meaningful and practically feasible to compute. In F.2 we
discuss the effect of few choices of f and how it can be
used to control the trade-off between faithfully representing
smaller and larger distances.

4.3. Action Noise Goal Generation

Our algorithm maintains a working set of goals for the pol-
icy to train against. The central challenge in designing
a curriculum is coming up with a way to ensure that the
working set contains as many goals of intermediate diffi-
culty (GOID) as possible. The most straightforward way of
generating new GOID goals from old ones is by applying
perturbations to the old goals. The downside of this simple
approach is that the noise must be carefully tailored to the
environment of interest, which places a significant demand
for domain knowledge about the nature of the environment’s
state space. Consider, for instance, that in an environment
where the states are represented by images it would be diffi-
cult to come up with any kind of noise such that the newly
generated states are feasible (i.e. in S). Another option is
to train a generative neural network to generate new GOID
goals, as proposed by GoalGAN (Florensa et al., 2018);
however, this introduces significant additional complexity.

A simple alternative is to employ action space noise. That
is, to generate new goals from an old goal, reset the envi-
ronment to the old goal and take a series of actions using
a random policy; take a random subset of the encountered
states as the new goals. The states generated in this way
are guaranteed to be both feasible and near the agent’s cur-
rent ability. Moreover, applying this approach requires only
knowledge of the environment’s action space, which is typ-
ically required anyway in order to interact with the envi-
ronment. A similar approach was used in (Florensa et al.,
2017), but in the context of generating a curriculum of start
states growing outward from a fixed goal state.

If implemented without care, action space noise has its own
significant drawback: it requires the ability to arbitrarily
reset the environment to a state of interest in order to start
taking random actions, a strong assumption which is not sat-
isfied for many real-world tasks. Fortunately, we can avoid
this requirement as follows. Whenever a goal is success-
fully achieved during the policy optimization phase, rather
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than terminating the trajectory immediately, we instead con-
tinue for a fixed number of timesteps using the random
policy. During the goal selection phase, we can take states
generated in this way for GOID goals as new candidate
goals. The part of the trajectory generated under the random
policy is not used for policy optimization. This combines
nicely with the off-policy method for training the distance
predictor, as the distance predictor can be trained on these
trajectories; this results in a curriculum learning procedure
for goal-conditioned policies that requires minimal domain
knowledge.

5. Experimental Results
As a test bed we use a set of 3 Mujoco environments
in which agents control simulated robots with continuous
state/action spaces and complex dynamics. The first envi-
ronment is called Point Mass, wherein an agent controls
a sphere constrained to a 2-dimensional horizontal plane
which moves through a figure eight shaped room. The
state space is 4-dimensional, specifying position and veloc-
ity in each direction, while the 2-dimensional action space
governs the sphere’s acceleration. In the other two environ-
ments, the agent controls a quadripedal robot with two joints
per leg, vaguely resembling an ant. The 41-dimensional
state space includes the center-of-mass of the Ant’s torso as
well as the angle and angular velocity of the joints, while
the action space controls torques for the joints. The Ant
is significantly more difficult than point mass from a con-
trol perspective, since a complex gait must be learned in
order to navigate through space. We experiment with this
robot in two different room layouts: a simple rectangular
room (Free Ant) and a U-shaped maze (Maze Ant). Further
discussion of our environments can be found in (Florensa
et al., 2018) and (Duan et al., 2016). For certain experiments
in the Maze Ant environment, the canonical state space is
replaced by a pixel-based state space giving the output of a
camera looking down on the maze from above.

In the first set of experiments we seek to determine whether
our online distance learning approach can replace the hand-
coded distance function in the GoalGAN algorithm, thereby
eliminating the need for a human to choose and/or design
the distance function for each new environment. We exper-
iment with different choices for the goal space, beginning
with the simplest case in which the goal space is the px, yq
coordinates of the robot’s center-of-mass (i.e. a subspace
of the state space) before proceeding to the more difficult
case in which the goal and state spaces are identical. Next,
we present the results of training the distance predictor us-
ing pixel inputs in the batch setting in the Ant Maze en-
vironment, showing that our method can learn meaningful
distance functions from complex observations. Next, we em-
pirically demonstrate the expanding ε-sphere phenomenon

mentioned in Section 4.1, which results from training the
distance predictor with on-policy samples. Finally, we show
that the goal generation approach proposed in Appendix
4.3 yields performance that is on par with GoalGAN while
requiring significantly less domain knowledge. In Appendix
F, we present additional experiments on comparing spectral
graph drawing with commute-time preserving embeddings
in a tabular setting and discuss the effects of some hyperpa-
rameters.

5.1. GoalGAN with Learned Action Distance

Here we test whether our proposed method can be used to
learn a distance function for use in GoalGAN, in place of
the hard-coded L2 distance. We explore two methods for
learning the distance function: 1) the on-policy approach,
in which the distance function is trained using states from
the trajectories sampled during GoalGAN’s policy-learning
phase, and 2) the off-policy approach, in which the distance
function is trained on states from random trajectories sam-
pled at the end of controlled trajectories during the policy-
learning phase. For the embedding network e we use a
multi-layer perceptron with one hidden layer with 64 hid-
den units and an embedding size of 20. As we are interested
in an algorithm’s ability to learn to accomplish all goals in
an environment, our evaluation measure is a quantity called
coverage: the probability of goal completion, averaged over
all goals in the environment. For evaluation purposes, goal-
completion is determined using Euclidean distance and a
threshold of ε “ 0.3 for Point Mass and ε “ 1.0 for Ant.
Since the goal spaces are large and real-valued, in practice
we approximate coverage by partitioning the maze into a
fine grid and average over goals placed at grid cell centers.
Completion probability for an individual goal is taken as an
empirical average over a small number of rollouts.

5.1.1. XY GOAL SPACE

In this experiment, the goal space is the px, yq coordinates of
the robot’s center-of-mass (i.e. a subspace of the state space).
We compare our approach with the baseline where the L2
distance is used as the distance metric in the goal space. In
this setting we are able to achieve performance comparable
to the baseline without using any domain knowledge, as
shown in Figure 1.

5.1.2. FULL STATE SPACE AS GOAL SPACE

In this setting the goal space is the entire state space, and
the objective of the agent is to learn to reach all feasible
configurations of the state space. This is straightforward
for the Point Mass environment, as its 4-dimensional state
space is a reasonable size for a goal space while still being
more difficult than the px, yq case explored in the previous
section. In contrast, the Ant environment’s 41-dimensional
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Point Mass Maze Ant Free Ant

Figure 1: Coverage plots for the px, yq goal space. Our
method does not require domain knowledge unlike the L2
distance.

state space is quite large, making it difficult for any policy
to learn to reach every state even with a perfect distance
function. Consequently, we employ a stabilization step for
generating goals from states, which makes goal-conditioned
policy learning tractable while preserving the difficulty for
learning the distance predictor. This step is described in
detail in Appendix E.

Point Mass Maze Ant Free Ant

Figure 2: Coverage plots for the full goal space.

Results for these experiments are shown in Figures 1 and 2,
where we can see that the agents are able to make progress
on all tasks. For the Point Mass agent, progress is slow
compared to the px, yq case, since now to achieve a goal
the agent has to reach a specified position with a specified
velocity. The learning progress of the Ant agent trained
to reach only stable positions suggests that our approach
of learning the distance function is robust to unseen states,
since the distance predictor can generalize to states not seen
or only rarely seen during training. Fig. 3(a,b) shows the
visualization of the distance estimate of our predictor on
states visited during a sample trajectory in the Point Mass
and Maze Ant environments in px, yq and full goal spaces
respectively. Fig. 3(c) shows the visualization on a set
of reference states in the Maze Ant environment in full
goal space. We observe that in all experiments, including
the set with the px, yq goal space, the on-policy and the off-
policy methods for training the distance predictor performed
similarly. In section 5.3 we study the qualitative difference
between the on-policy and off-policy methods for training
the distance predictor.

5.2. Pixel inputs

To study whether the proposed method of learning a distance
function scales to high-dimensional inputs, we evaluate the
performance of the distance predictor using pixel represen-
tation of the states. This experiment is performed in the
batch setting. Similar to the pretraining phase of (Wu et al.,
2019), the embeddings are trained using sample trajectories
collected by randomizing the starting states of the agent.
Each episode is terminated when the agent reaches an un-
stable position or 100 time steps have elapsed. Figure 3
(d) shows the distance estimates of the distance predictor
in this setting. For qualitative comparison, we also exper-
imented with the approach proposed in (Wu et al., 2019);
these results are shown in section F.3 for various choices of
hyperparameters.

5.3. Expanding ε-sphere

In this section we show that there are qualitative differences
between the on-policy and off-policy schemes for training
the distance predictor. Since the goal is considered achieved
when the agent is within the ε-sphere of the goal, the episode
is terminated when the agent reaches the boundary of the
ε-sphere. As the learning progresses and the agent learns
a shortest path to the goal, the agent only learns a short-
est path to a state on the boundary of the ε-sphere of the
corresponding goal. In this scenario, the path to the goal
g from any state within the ε-sphere of g under the policy
conditioned on g need not necessarily be optimal since such
trajectories are not seen by the policy conditioned on that
specific goal g. However, the number of actions required to
reach the goal g from the states outside the ε-sphere along
the path to the goal decreases as a result of learning a shorter
path due to policy improvement. Therefore, as the learning
progresses until an optimal policy is learned, the number
of states from which the goal g can be reached in a fixed
number of actions increases, thus resulting in an increasing
the volume of the ε-sphere centered on the goal for a fixed
action distance k, when using on-policy samples to learn
the distance predictor.

This phenomenon is empirically illustrated in the top row
in Fig. 4. For a fixed state g near the starting position, the
distance from all other states to g is plotted. The evolution of
the distance function over iterations shows that for any fixed
state s, dπps, gq gets smaller. Equivalently, the ε-sphere
centered on g increases in volume. In contrast, the bottom
row in Fig. 4 illustrates the predictions made by an off-
policy distance predictor; in that case, the dark region is
almost always concentrated densely near g, and the volume
of the ε-sphere exhibits significantly less growth.

Since the agent does not receive training for states that are
within the ε-sphere centered at a goal g, it is desirable to
keep the ε-sphere as small as possible. One way to do this
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(a) (b) (c) (d)

Figure 3: (a, b): Predicted action distance between a reference state and states along a trajectory in Point Mass (a) and Maze
Ant (b); (c,d,e): Predicted action distance between stabilized reference states and all other states. (c): Ant Maze environment
in full goal space (trained online) and (d): pixel space (batch setting) respectively. Closer states are darker. Each subplot
uses a different reference state near the starting state shown as a blue dot. Full heatmap for (d) is shown in Figure 16.

10 20 50 75 100 120 150 200

training iterations

Figure 4: Predictions of the distance predictor trained with
on-policy (top) and off-policy (bottom) samples in Maze
Ant with px, yq goal space illustrating how the predictions
evolve over time. Darker colors indicate smaller predicted
distance and the small blue dot indicates the reference state.

would be to employ an adaptive algorithm for choosing ε as
a function of g and the agent’s estimated skill at reaching g;
as the agent gets better at reaching g, ε should be lowered.
We leave the design of such an algorithm for future work,
and propose the off-policy scheme as a practical alternative
in the meantime. We note that this phenomenon is not
observed in the visualization in the full goal space, possibly
due to the stabilization of the ant during evaluation.

5.4. Generating Goals Using Action Noise

We perform this comparison in both the Maze Ant and Free
Ant environments, using px, yq as the goal space and the Eu-
clidean distance. The results, shown in Fig. 5, demonstrate
that the performance of our approach is comparable to that
of GoalGAN while not requiring the additional complex-
ity introduced by the GAN. The evolution of the working
set of goals maintained by our algorithm for Maze Ant is
visualized in Fig. 6.

Though our approach requires additional environment in-
teractions, it does not necessarily have a higher sample
complexity compared to GoalGAN in the case of indica-
tor reward functions. This is because the goals generated
by GoalGAN are not guaranteed to be feasible (unlike our
approach); trajectories generated for unfeasible goals will

(a) Maze Ant (b) Free Ant

Figure 5: Comparing the proposed goal generation algo-
rithm against GoalGAN.

receive 0 reward and will not contribute to learning.

6. Conclusion
We have presented an approach to automatically learn a
task-specific distance function without the requirement of
domain knowledge, and demonstrated that our approach is
effective in the online setting where the distance function
is learned alongside a goal-conditioned policy while also
playing a role in training that policy. We then discussed
and empirically demonstrated the expanding ε-sphere phe-
nomenon which arises when using the on-policy method
for training the distance predictor. This can cause difficulty
in setting the ε hyperparameter, particularly when the final
performance has to be evaluated using the learned distance
function instead of using a proxy evaluation metric like the
Euclidean distance. This indicates that off-policy distance
predictor training should be preferred in general. Finally, we
introduced an action space goal generation scheme which
plays well with off-policy distance predictor training. These
contributions represent a significant step towards making
goal-conditioned policies applicable in a wider variety of
environments (e.g. visual domains), and towards automat-
ing the design of distance functions that take environment
dynamics into account without using domain knowledge.
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This is the supplementary for the paper titled "Self-
supervised Learning of Distance Functions for Goal-
Conditioned Reinforcement Learning"

A. Discussion of MDS and Spectral
embedding

A.1. Classical MDS

First we discuss the tools used in cMDS, before describing
cMDS itself.

Provided with a matrix X P Rnˆm of n objects in
m-dimensional space, we can form the squared pair-
wise distances matrix denoted by Dp2q P Rnˆn such that
D
p2q
ij “ ||xi ´ xj ||

2 and can be expressed as Dp2q “ c1T `

1cT ´ 2XXT where c P Rn such that ci “ ||xi||
2 and

1 P Rn is the all-ones vector of length n. Let B “ XXT .
The squared pairwise distances matrix Dp2q and the scalar
product matrix B can be obtained from the configuration
matrix X .

Recovering X from Dp2q is the objective of cMDS. We
first consider the simpler case of recovering X from the
scalar product matrix B. Since B is symmetric and positive
semi-definite, B admits an eigen-decomposition

B “ QΛQT “ QΛ
1
2 Λ

1
2QT “ X

1

X
1T

(8)

where Λii is the ith largest eigenvalue of B and Q is an
orthogonal matrix whose columns consist of eigenvectors of
B ordered by their corresponding eigenvalues in descending
order. Hence, given a pairwise scalar product matrix B, a
configuration X

1

that preserves the pairwise distances can
be recovered. The origin is assumed to be 0 P Rn.

We now proceed to describe the procedure to obtain a con-
figuration that preserves squared pairwise distances given
in Dp2q. Let J “ I ´ 1

n11
T P Rnˆn. For any x P Rn,

y “ Jx is a column vector in Rn balanced on the origin
(mean is zero). Similarly for x P R1ˆn, xJ is a row vector
balanced on the origin. Since Dp2q “ c1T ` 1cT ´ 2XXT

we get

´
1

2
JDp2qJ “ ´

1

2
Jpc1T ` 1cT ´ 2XXT qJ

“ 0´ 0` JXXTJ (9)

because J1 “ 0. Since we are only interested in a con-
figuration X that preserves the distance by the application
of cMDS, we assume that the columns of X are balanced
on 0. Therefore JX “ X . Hence, equation (9) is written
as ´ 1

2JD
p2qJ “ XXT “ B. Following equation (8), an

eigen-decomposition is performed on B “ QΛ
1
2 Λ

1
2QT .

Let Λ
1
2
` be the matrix containing columns corresponding

to the positive eigenvalues and Q` be the corresponding

eigenvectors. A configuration that preserves the pairwise
distances is then obtained X “ Q`Λ

1
2
`. Note that the recon-

struction produces only a configuration that preserves the
pairwise distance exactly and does not necessarily recover
the original configuration (differs by rotation).

An alternate characterization of cMDS is given by the loss
function LpXq “ ||XXT ´B||2F known as strain where F
is the Frobenius norm. Due to the Frobenius norm, strain
can be written as

LpXq “
ÿ

iăj

pxix
T
j ´Bijq

2 (10)

showing that cMDS can be used in an iterative setting.

A.2. Spectral Embeddings of Graphs

Given a simple, weighted, undirected and connected graph
G, the laplacian of the graph is defined asL “ D´W where
W is the weight matrix and D is the degree matrix. The
eigenvectors corresponding to the smallest positive eigenval-
ues of the graph laplacian are used to obtain an embedding
for the nodes and have been shown useful in several ap-
plications such as spectral clustering (Luxburg, 2007) and
spectral graph drawing (Koren, 2003).

The discussion here in the finite state setting but the defini-
tion of the Laplacian used here is same as that in (Wu et al.,
2019) and hence we refer the reader to (Wu et al., 2019) for
a discussion in continuous state spaces.

First we begin by translating the equations in (Wu et al.,
2019) to the finite state setting. In (Wu et al., 2019), the
matrix D serves the dual purpose of being the weight W
matrix for the Laplacian L “ S ´W where S is the degree
matrix Sii “

ř

jWij , and the density of the transition
distributions of the random walk on the graph.

In the finite state case we write P and W to denote the use
of D for transition matrix and weight matrix respectively.
Pπ denotes the transition probabilities of the markov chain
induced by the policy π. P̂π denotes the transition proba-
bilities of the time-reversed markov chain of policy π. We
assume that the stationary distribution ρ of Pπ exists.

The definition of density Dpu, vq in (Wu et al., 2019) is
given by

Dpu, vq “
1

2

Pπpv|uq

ρpvq
`

1

2

Pπpu|vq

ρpuq
(11)

Since Dpu, vq is integrated with respect to measure ρpvq
and since integrating with respect to a measure is analogous
to weighted sum, equation (11) is multiplied by ρpvq to
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obtain

Puv “
1

2
Pπpv|uq `

1

2

ρpvq

ρpuq
Pπpu|vq (12)

“
1

2
Pπpv|uq `

1

2
P̂πpv|uq (13)

For obtaining W, notice that Dpu, vq is integrated with
respect to ρpuq and ρpvq in equation (2) of (Wu et al., 2019).
Therefore, by multiplying equation (11) by ρpuq and ρpvq
we obtain

Wuv “
1

2
ρpuqρpvq

Pπpv|uq

ρpvq
`

1

2
ρpuqρpvq

Pπpu|vq

ρpuq
(14)

“
1

2
ρpuqPπpv|uq `

1

2
ρpvqPπpu|vq (15)

Note that the transition probabilities P is given by forward
transition probabilities Pπ with 0.5 probability and the time-
reversed P̂π with 0.5 probability. Such a restriction is re-
quired since transition probabilities of a random walk on an
undirected graph have to be reversible. However, in the RL
settting the samples are collected only using Pπ . Hence, we
assume that Pπ is reversible. Note that this assumption is a
special case of the transition matrix P given in equation (12).
Hence, the definition of Puv is given by Puv “ Pπpu|vq
and W is given by Wuv “ ρpuqPπpv|uq.

A.3. Euclidean Commute Time Distance

Given the Laplacian L “ D´W , (Fouss et al., 2005; 2007)
show that the average first passage time and the average
commute times can be expressed as

mpj|iq “
n
ÿ

k“1

pl:ik ´ l
:

ij ´ l
:

jk ` l
:

jjqdkk (16)

and
npi, jq “ VGpl

:

ii ` l
:

jj ´ 2l:ijq (17)

respectively, where VG “
řn
i“1Dii is the volume of the

graph. npi, jq can be expressed as

npi, jq “ VGpl
:

ii ` l
:

jj ´ l
:

ij ´ l
:

ijq

“ VGpei ´ ejq
TL:pei ´ ejq

“ VGpei ´ ejq
TQΛQT pei ´ ejq

“ VGpei ´ ejq
TQΛ

1
2 Λ

1
2QT pei ´ ejq

“ VGpei ´ ejq
TQΛ

1
2TΛ

1
2QT pei ´ ejq

“ VGpxi ´ xjq
T pxi ´ xjq (18)

where xk is Λ
1
2QT ek “ peTkQΛ

1
2 qT , the column vector

corresponding to the ith row of QΛ
1
2 . The L2 distance

in this embedding space between nodes pi, jq, ||xi ´ xj ||,

corresponds to
a

npi, jq up to a constant factor 1?
VG

, termed
euclidean commute time distance (ECTD) in (Fouss et al.,
2005).

Since the orthogonal complement of the null-space of the
linear transformation is invertible and a vector of all ones 1
spans the nullspace of L, psedudo-inverse of the Laplacian
is intuitively given by L: “ pL` 1

n11
T q´1´ 1

n11
T . Hence,

it is easy to verify that L: is symmetric and the nullspace of
L: is also 1. Therefore, L: is double centered. The resultant
matrix of the double centering operation JAJ on any matrix
A are given by

pJAJqij

“ aij ´
1

n

n
ÿ

k“1

aik ´
1

n

n
ÿ

m“1

amj `
1

n2

n
ÿ

m“1

n
ÿ

k“1

amk

Using these two facts, it is easy to verify that

´
1

2
pJNJqij

“ L:ij ´
1

n

n
ÿ

k“1

L:ik ´
1

n2

n
ÿ

k“1

L:kk `
1

n2

n
ÿ

m“1

n
ÿ

k“1

L:mk

“ L:ij (since L: is double centered)

where N is the matrix of commute times among all pairs of
nodes.

Hence, the solution to the embedding space that preserves
ECTD given by equation (18) is the same as the one pro-
vided by classical MDS by taking N as Dp2q or L: as B.

Finally, since that the eigenvectors of L and L: are the same
and the non-zero eigenvalues of L: is the inverse of the
corresponding non-zero eigenvalues of L. This shows that
simply using the eigenvectors of the Laplacian is insufficient
to obtain an embedding where the distances are preserved.
An empirical comparision of the embeddings obtained from
eigenvectors and the scaled eigenvectors of the Laplacian to
compute distances is shown in F.1 in a tabular setting.

A.4. Approximation using Metric MDS

The mean first passage times mp.|.q are not available and
has to be estimated from the trajectories. First note that
mpj|iq “

ř8

t“0 P
t
ijt where we use the notation P tij to de-

note the probability of going from state i to j in exactly n
steps for the first time. As a result, the objective function is
of the form

σpXq “
1

2

n
ÿ

i“1

n
ÿ

j“1

wijp||xi ´ xj ||
2
2 ´ kq

2 (19)

where k „ P tij . The quantities in equation (19) can be
obtained from trajectories drawn under a fixed policy, thus
providing a practical approach to learn the embedding as
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given in equation (4) with q “ 2. When the quantities k are
obtained from the trajectories, in addition to the weights wij
on pi, jq, each k is weighted by P kij . This emphasizes the
shorter distances for each pair of pi, jq. As show in F.2, q in
equation (4) provides a mechanism to control the trade-off
between the larger and smaller distances by considering q
as a hyperparameter. Thus, setting wkij to ρpiqP kij ` ρpjqP

k
ji

provides a practically convenient set of weights and the
trade-off it induces can be mitigated as desired by changing
q.

B. Training the distance predictor
The distance predictor has to be trained prior to being used
in determining whether the goal has been reached in order
to produce meaningful estimates. To produce a initial set of
samples to train the distance predictor, we use a randomly
initialized policy to generate a set of samples. This provides
a meaningful initialization for the distance predictor since
these are states that are most likely to occur under the initial
policy.

The distance predictor is a MLP with 1 hidden layer and 64
hidden units and ReLU activation. We initialize distance
predictor by training on 100, 000 samples collected accord-
ing to the randomly initialized policy for 50 epochs. The
starting position is not randomized. In subsequent itera-
tions of our training procedure the MLP is trained for one
epoch. The learning rate is set to 1e-5 and mini-batch size
is 32. The distance predictor is trained after every policy
optimization step using either either off-policy or the on-
policy samples. The embeddings are 20-dimensional and we
use 1-norm distance between embeddings as the predicted
distance.

C. Goal Generation Buffer
To generate goals according to the proposed approach we
store the states visited under the random policy after reach-
ing the goals in a specialized buffer and sample uniformly
from the buffer to generate the goals for each iteration. The
simplest approach of storing the goals in a list suffers from
the two following issues: i) all the states visited under the
random policy from the beginning of the training procedure
will be considered as a potential goal for each iteration and
ii) the goals will be sampled according to the state visitation
distribution under the random policy. The issues i) and ii)
are problematic because the goal generation procedure has
to adapt to the current capacity of the agent and avoid the
goals that have already been mastered by the agent; sam-
pling goals according to the visitation distribution will bias
the agent towards the states that are more likely under the
random policy. To overcome these issues we use a fixed size
queue and by ensure that the goals in the buffer are unique.

To avoid replacing the entire queue after each iteration, only
a fixed fraction of the states in the queue are replaced in
each iteration. In our experiments, the queue size was set
500 and 30 goals were updated after each iteration.

We observe that our goal generation or off-policy distance
predictor are agnostic to the policy being a random policy
and hence the random policy can be replaced with any policy
if desired.

Figure 6: Evolution of the goals generated by our goal
generation approach (top). A sample of goals so-far en-
countered (bottom), color-coded according to estimated
difficulty: green are easy, blue are GOID and red are hard.

D. Hyperparameters
The GoalGAN architecture and its training procedure and
the policy optimization procedure in our experiments are
similar to (Florensa et al., 2018). Similar to the distance pre-
dictor, GoalGAN is trained initially with samples generated
by a random policy. The GAN generator and discriminator
have 2 hidden layers with 264 and 128 units respectively
with ReLU non-linearity and the GAN is trained for 200
iterations after every 5 policy optimization iterations. A
component-wise gaussian noise of mean zero and variance
0.5 are added to the output of the GAN similar to (Florensa
et al., 2018). The policy network has 2 hidden layers with
64 hidden units in each layer and tanh non-linearity and
is optimized using TRPO (Schulman et al., 2015) with a
discount factor of 0.99 and GAE of 1. The ε value was set
to 1 and 60 with L2 and the learned distance, respectively,
in the Ant environments and 0.3 and 20 for L2 and learned
distance, respectively, for the Point Mass environments. In
order to determine the first occurrence of a state, we use
a threshold of 1e ´ 4 in the state space. This value is not
tuned.

The hyperparameter for ε and the learning rate were de-
termined by performing grid search with ε values 50, 60
and 80 (Maze Ant) and 20, 30 (Point Mass) and the learn-
ing rates of 1e-3, 1e-4, 1e-5 in the off policy setting. For
the sake of simplicity we use the same ε for the on-policy
and off-policy distance predictors in our experiments. All
the plots show the mean and the confidence interval of
95% for all our experiments using 5 random seeds. Our
implementation is based on the github repository for (Flo-
rensa et al., 2018), located at https://github.com/
florensacc/rllab-curriculum.

https://github.com/florensacc/rllab-curriculum
https://github.com/florensacc/rllab-curriculum
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E. Goal Stabilization for Ant Tasks
For Ant tasks we used a modified setup for obtaining goals
from states. We first identified a stable pose for the Ant’s
body, with body upright and limbs in standard positions.
Then, to create a goal from a state, we take the position
component from the state, but take all other components
(joint angles and angular velocities) from the stable pose.
This stabilization step is used for all goals; however, the
distance predictor is still trained on the full state space.

F. Further experiments
F.1. Effect of scaling the eigenvectors of the Laplacian

In this section we compare the embeddings obtained using
the eigenvectors of the Laplacian (spectral embedding) and
the embeddings obtained by scaling the eigenvectors by
the inverse of square root of the corresponding eigenvalues
(scaled spectral embedding). We perform this comparison
in two mazes with 25 states. A transition from each node
to the 4 neighbours in the north, south, east and west direc-
tions are permitted, with equal probabilities in the first maze
(figure 8) and, north and east with 0.375 and south and west
with 0.125 probabilities in the second maze (figure 9). We
choose the state corresponding to p2, 2q as the center and
the distance from this state to all the other states are plotted.
The first two columns in figures 8 and 9 correspond to spec-
tral embedding and scaled spectral embedding respectively.
The third column corresponds to the ground truth

a

npi, jq
computed analytically from the mean first passage times
computed as Mij “

Zjj´Zij
ρpjq where Z “ pI´P`1ρT q´1.

The distances produced by spectral embedding are multi-
plied by the ratio of maximum distance of scaled spectral
embedding and the maximum distance of spectral embed-
ding to produce a similar scale for visualization. The Lapla-
cian is given by L “ D´W withW given by equation (14)
and D is the diagonal matrix with stationary probabilities
on the diagonal.

As seen in both the Figures 8 and 9, increasing the size of the
embedding dimensions of scaled spectral embeddings better
approximates the commute-time distance. The same cannot
be said for the approximation given by spectral embeddings.
In the first maze (Figure 8), the approximation gets better
until the embedding size of 13 and then deteriorates. When
the objective is to find an lower-dimensional approxima-
tion of the state space, the choice of the embedding size is
treated a hyperparameter and hence one might be tempted to
consider this as hyperparameter tuning. However, as shown
in the second maze (Figure 9), when the environment dy-
namics are not symmetric, the effect is pronounced to the
extent that there is no single choice of the embedding size
for the spectral embeddings that best preserves the distances
of the nearby states and the faraway states. Even in the

(a) (b)

Figure 7: The square root of commute times from the cen-
ter state p2, 2q to all other states is taken as the reference.
RMSE of distances obtained from spectral and scaled spec-
tral embeddings is plotted for (a) Maze with uniform transi-
tion probabilities and (b) Maze with non-uniform transition
probabilities. The distances obtained from spectral embed-
dings are scaled by the ratio of maximum distance from
scaled spectral embeddings and that of spectral embeddings;
this is done to map the spectral embeddings to the same
scale as square root of commute times.

case when the embedding size is 3, the spectral embeddings
are markedly different from scaled spectral embeddings as
the states p0, 3q, p0, 4q, p1, 4q are marked equidistant from
the reference state by the spectral embeddings. A compari-
son of the RMSE error of spectral embeddings and scaled
spectral embedding is provided in Figure 7. The difference
between spectral embeddings and scaled spectral embed-
dings is blurred in the uniform transitions case since the
eigenvalues are similar. In the non-uniform transitions case,
the difference between spectral embeddings and scaled spec-
tral embeddings are evident since the eigenvalues are very
dissimilar. Note that similar eigenvalues means the corre-
sponding dimensions have similar weights; scaling by a
(approximately) constant - scaled spectral embedding ap-
proach - doesn’t cause significant difference.

We finally note that our objective is not find a low-
dimensional embedding of the state space but to find an
embedding that produces a meaningful distance estimate.
Scaled spectral embeddings are appropriate for this purpose
since the accuracy of the distance estimates improves mono-
tonically with an increase in the number of dimensions.

F.2. Effect of q

We empirically demonstrate that increasing q increases the
effect of larger distances. In order to obtain the same scale
of measurements, the distance in the embedding space are
raised to the power q. We show the effect of q for values
0.5, 1, 2, 4. It is clearly evident that increasing q increases
the radius and the granularity of distance between points that
are near and far are lost. The reason for is suggested in (Borg
& Groenen, 2006) (section 11.3). Increasing q increases the
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(a) 1 (b) 3

(c) 5 (d) 7

(e) 9 (f) 11

(g) 13 (h) 15

(i) 17 (j) 19

(k) 21 (l) 24

Figure 8: Visualization of the distance from state p2, 2q to all other states using different embedding sizes produced by
spectral embedding(first column) and scaled spectral embedding(second column) along with the ground-truth computed
analytically(third column). The transition from each state to its neighbours are uniformly random. Spectral embedding
and scaled spectral embeddings are reasonably similar upto 11 dimensions. The distance estimate of spectral embeddings
deteriorates as many ’less informative’ dimensions corresponding to large eigenvalues are added and weighed with as much
importance as the ’more informative’ dimensions given by small eigenvalues.
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(a) 1 (b) 3

(c) 5 (d) 7

(e) 9 (f) 11

(g) 13 (h) 15

(i) 17 (j) 19

(k) 21 (l) 24

Figure 9: The transition from a state to its neighbours in north and east are with probability 0.375 and in south and west are
with probability 0.125. The choice of addition of a dimension to spectral embedding presents a trade-off between preserving
the previous estimate and improving the estimate of a closer state. In contrast, the scaled spectral embedding improves with
the addition of every dimension.
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weight given to larger distances. For instance, when q “ 2,
the stress is approximately 4δ2ijpδij ´ dijq

2 where δij “
a

npi, jq
1
2 since the target dissimilarity can be rewritten as

δ
1
q

ij

q

. The qth root of the δij decreases the granularity of
the difference between near and far states and the larger
weighting term results in overweighting sporadic examples
causing an increase in radius. Similarly, it can be shown
that when q “ 4, the stress is given by 16δ6ijpδij ´ dijq

2

where δij “
a

npi, jq
1
4 .

F.3. Prediction with pixel inputs

The distance predictor is neural network with 4 convolution
layers with 64 channels and kernel size of 3 in each layer
with strides p1, 2, 1, 2q followed by 2 fully connected layers
with 128 units in each layer and the output layer has 32
units. We used relu non-linearity along with batchnorm.
The learning rate was set to 5e-5 and Adam (Kingma & Ba,
2014) optimizer. The network was trained for 50 epochs
with p “ 2 and q “ 1. The top-down view of the maze ant
is shown in Figure 11. The results with the approach of (Wu
et al., 2019) are shown in Figures 12 and 13. The training
setup is the same as described in section 5.2. We uniformly
sample the states in each trajectory (hence, λ is approxi-
mately 1). As β is increased (better approximation of the
spectral objective objective), the points that are predicted
close in almost all of the reference points resembles the
body of the ant in the stable position (Figure 11) centered
on nearby points.

When used in an online setting, the negative sampling in
(Wu et al., 2019) could be problematic especially when
bootstrapping (without arbitrary environment resets). In
contrast, our objective function does not require negative
sampling and only uses the information present within a
trajectory, making it more suitable for online learning. The
discussion in F.1 suggests that increasing the embedding
dimensions monotonically increases the quality of distance
estimates in the scaled spectral embeddings unlike spectral
embeddings. We show this phenomenon using the pixel
inputs in Figures 14 (Wu et al., 2019) and 15 (our method).
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(a) q “ 0.5 (b) q “ 1

(c) q “ 2 (d) q “ 4

Figure 10: We study the effect of q on the radius and degree of closeness of the ant agent in the free maze. This shows that q
is easy to tune and provides a straightforward mechanism to scale the distances. A similar effect is also observed in the other
environments and with pixel inputs.
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Figure 11: Top-down view of the Maze Ant. The RGB image scaled to 32ˆ 32 is the input in the pixel tasks.
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(a) β “ 0.5 (b) β “ 1

(c) β “ 2 (d) β “ 6

Figure 12: Laplacian in RL using pixel inputs. Higher β better approximates spectral graph drawing objective. LR “ 1e´ 4
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(a) β “ 0.5 (b) β “ 1

(c) β “ 2 (d) β “ 6

Figure 13: Laplacian in RL using pixel inputs. Higher β better approximates spectral graph drawing objective. LR “ 5e´ 5
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(a) 16 (b) 32

(c) 64 (d) 128

Figure 14: The effect of size of embeddings using the objective of Laplacian in RL with pixel inputs for LR “ 1e´ 4 and
β “ 1. The quality of the approximation of the distance drops after 32 dimensions.
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Figure 15: Increasing the embedding size in our approach improves the distance estimates.
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Figure 16: Full heatmap of our approach using pixel inputs. Our approach does not require negative sampling.
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