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1 Introduction

Dynamic Programming problems are typically solved using methods such as
value iteration or policy iteration. However, these methods are not suited for
tasks involving large or continuous state space. One approach to solve the
dynamic programming task in such settings is to reduce the state space by
aggregation. The conventional approach to aggregate states has been to use
heuristics without any theoretical guarantees but in [2] an approach to define
the distance between states that is meaningful to aggregate states is proposed.
In order to develop the distance function, tools from analysis, measure theory,
optimal transport and the language of topology are employed. The objective
of this course project is to gain familiarity with those tools and understand the
arguments made.

2 Background

2.1 Measure Theory

The need for measure theory arised due to the Banach-Tarski paradox[9]. Banach-
Tarski paradox states that a solid ball in a 3-dimensional space can be decom-
posed into a finite number of subsets and assembled in a different way to obtain
two identical copies of the original solid ball. This does not match our intuition
and hence some amendments have to made to the theory, the result of which is
measure theory.

An algebra on a set S is just a collection of subsets of S with certain prop-
erties (axioms of algebra). Specifically,

Definition 1. A collection Σ0 of subsets in S is called an algebra on S if

(i) Ω ∈ Σ0

(ii) F ∈ Σ0 =⇒ F c ∈ Σ0

(iii) F,G ∈ Σ0 =⇒ F ∪G ∈ Σ0

An algebra is closed under finite unions and finite intersections because of
the properties (ii) and (iii) along with de-morgan’s law.
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The structure imposed by an algebra is insufficient to study many questions
of practical interest. For example, consider a random experiment of tossing a
coin until the occurrence of a head. To answer the question whether the number
of tosses is even, one needs to consider a set of countable elements. Such a set
cannot be contained in the algebra (because the algebra is only closed under
finite set operations). This motivates a structure called σ−algebra.

Definition 2. A collection Σ of subsets of S is called a σ−algebra on S if Σ is
an algebra on S and for F1, F2 · · · ∈ Σ,

∪i∈NFi ∈ Σ

Therefore, the σ−algebra is closed under countable unions and countable
intersections.

Definition 3. A pair (S,Σ) is called a measurable space. An element of Σ is
called a Σ-measurable subset of S.

Definition 4. A measure is a function µ: Σ→ [0,∞] such that:

(i) f(φ) = 0

(ii) If A1, A2, · · · is a countable collection of disjoint Σ−measurable sets, then
µ(∪i∈NAi) =

∑∞
i=1 µ(Ai)

The definition of measure enforces that the a measure is only countably
additive and most importantly nothing is specified about uncountable addition.

Definition 5. A triple (S,Σ, µ) is called a measure space.

µ is called a finite measure if µ(S) < ∞. Otherwise it is called a infinite
measure.

A measure µ such that µ(S) = 1 is called a probability measure.

Definition 6. Let C be a class of subsets of S. Then σ(C), the σ−algebra
generated by C, is the smallest Σ−algebra that contains C.

This definition is useful because it lets us start with some sets that are of
interest (i.e to which we want to assign a measure) and construct a σ−algebra
accordingly. This is non-empty because the power set is a σ−algebra. The
smallest Σ-algebra containing C can be constructed by taking intersections of
all the σ−algebras containing C. This argument utilizes the fact that the ar-
bitrary intersections of σ−algebras is a σ−algebra, which is true because the
intersection includes the entire set S, the complement of every intersecting ele-
ment and also the countable unions of the intersecting elements.

An important application of the generating σ−algebra is the following:

Definition 7. B(S), the Borel σ−algebra on S, is the σ−algebra generated by
the family of open subsets of S.

Definition 8. (X,Σ) and (Y, T ) be measurable spaces. A function f : X → Y
is said to be measurable if

f−1(E) = {x ∈ X|f(x) ∈ E} ∈ Σ,∀E ∈ T
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That is, a measurable function takes back T−measurable sets in Y to Σ−measurable
sets in X.

Definition 9. A function f : X → Y is called Borel measurable if any open for
any open A ∈ Y , f−1(A) is a Borel set.

2.2 MDPs

Markov decision process is a mathematical model for sequential decision making
under uncertainty.

Formally, an MDP is a 4-tuple (S,A, P, r) where S is the set of feasible
states, A the set of feasible actions, P is the transition kernel with the Markov
property and r(s, a) is the reward function. The expected cumulative sum of
discounted rewards starting from a state s ∈ S is known the value of the state
s. The objective of solving an MDP is to obtain a strategy, known as a policy
π, to select an action a ∈ A in every s ∈ S such that the expected rewards is
maximized.

For the purpose of [2], S is a complete separable metric space with the Borel
sigma algebra Σ, A is a finite set of actions, r : S × A → R is a measurable
function. The transition kernel P (s, a, .) : Σ → [0, 1] is a probability measure
∀s ∈ S, a ∈ A.

In [2] the following assumptions are made:

(i) The reward function is bounded i.e B := sups,s′ ,a|ras − ras′ | <∞

(ii) For each a ∈ A, r(., a) is continuous on S

(iii) For each a ∈ A, P as is weakly continuous on S

These assumptions provide a foundation on which the theoretical arguments are
made in order to construct the ’distance’ function. We will see the usefulness
of these assumptions in the later sections.

2.3 Partitions and Equivalence Relations

The definitions and tools introduced in this section are required to understand
the definition of bisimulation and how the problem of state aggregation is re-
formulated in terms of bisimulation.

Definition 10. A partition of a non-empty set X is a disjoint class {Xi} of
non-empty subsets of X whose union is X. Xi are called partition sets.

Definition 11. A binary relation R on a set S classifies whether two elements,
x, y ∈ S are related or not.

Example 1. < defined in the usual sense on R.

An alternate characterization of the binary relation is defined as follows:

Definition 12. A binary relation R is on a set X is a subset of X ×X. x, y
∈ X are related if (x, y) ∈ R.
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Definition 13. An equivalence relation, denoted by ∼, on a set X is any binary
relation that satisfies the following properties:

(i) x ∼ x ∀ x ∈ X (reflexivity)

(ii) x ∼ y =⇒ y ∼ x (symmetry)

(iii) x ∼ y and y ∼ z =⇒ x ∼ z (transitivity)

For our purposes it is important to note that a partition induces an equiv-
alence relation and vice-versa. Let {Xi} be a a partition of X and let a binary
relation ∼ be defined as follows: x ∼ y if both x and y belong to the same
partition set Xi. ∼ defined as above satisfies all the properties of an equiva-
lence relation and thus ∼ is an equivalence relation. To see that an equivalence
relation induces a partition, let ∼ be an equivalence relation and for x ∈ X, let
{x} = {y : y ∼ x}. Because of the transitivity of ∼, it is easy to see that for
any z ∈ X, z ∼ x =⇒ {z} = {x}. Therefore, the {x} and {z} are either the
same or disjoint. The collection of distinct {x}, thus forms a disjoint class C
and each {x} is non-empty because x ∼ x. Thus, the C is a partition of X.

We have the tools necessary to introduce the notion of bisimulation, an
equivalence relation that determines whether two states of an MDP are equiv-
alent or not. Bisimulation can be equivalently seen as a notion to aggregate
states thereby creating a partition of the state space where two states lie in the
same partition only if they are equivalent.

Definition 14. Let (S,A, P, r) be an MDP. An equivalence relation R is a
bisimulation relation if the following properties are satisfied:

sRs
′
⇐⇒ for every a ∈ A, ras = ra

s′
and for every X ∈ Σ(R), P as (X) = P a

s′
(X)

The largest of the bisimulation relation is called bisimilarity.

To understand the term largest in the definition of bisimilarity it is helpful
to see bisimulation relations as a subset of S × S.

2.4 Partial Ordered Sets and Lattices

The second type of relations that can be defined on a set that is useful for
us is the order relation. Specifically we consider the partial order relation and
concepts that arises as a consequence of partial orders. The term partial suggests
that the order relation may be undefined for some pairs.

Definition 15. A partial order is a relation ≤ and has the following properties:

(i) x ≤ x for ∀x ∈ S

(ii) x ≤ y and y ≤ x =⇒ x = y

(iii) x ≤ y and y ≤ z =⇒ x ≤ z

Definition 16. Any non-empty set S endowed with a partial order is known as
a partially ordered set.

If for x, y ∈ S, if x ≤ y or y ≤ x, then x and y are said to be comparable.
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Definition 17. If a relation P is a partial order and further possesses the
property that any two elements x, y ∈ S are comparable, then P is called a total
order.

Definition 18. Let A be a non-empty subset of a partially ordered set P . An
element x ∈ P is called a lower bound of A if x ≤ a∀a ∈ A. A lower bound of A
is greatest lower bound of A if it is greater than or equal to every lower bound
of A.

Greatest lower bound is unique if it exists. To see why, let a1 and a2 be
both greatest lower bounds. By the definition of greatest lower bound, a1 ≤ a2
and a2 ≤ a1 and by property (2) of the partial order, a1 = a2.

An upper bound and the least upper bound of a non-empty subset A of a
set X is defined similarly.

Definition 19. A Lattice is a partially ordered set L in which every pair of
elements have the least upper bound and the greatest lower bound.

If x, y ∈ S, then the least upper bound and greatest lower bound are denoted
by x ∨ y and x ∧ y and known as meet and join respectively.

Definition 20. A complete lattice is a lattice with the property that for every
non-empty subset has a greatest lower bound and a least upper bound.

Definition 21. Let (L,�) be a partial order. A function f : L→ L is monotone
if x � x

′
=⇒ f(x) � f(x

′
). A point x ∈ X is said to be a prefixed point if

f(x) ≤ x, a fixed point if f(x) = x and a post-fixed point if f(x) ≥ x.

We have all the tools to understand section 2.2 of [2]. In order to get an
intuition of Theorem 2.1, it is helpful to visualize a monotonically increasing
function whose domain and range are the same on a closed interval [a, b] in R.
If f(a) = a, then a is the least prefixed point and also the least fixed point,
otherwise f(a) > a, let’s say f(a) = x. Then, the prefixed point cannot occur in
[a, x). By applying the same reasoning in [x, b] and by noticing that this process
has to stop since f(b) ≤ b, we see that the least prefixed point exists and the
least prefixed point is the least fixed point. By similar argument, we also see
that the postfixed point exists and greatest postfixed point is the greatest fixed
point.

The definition 14 characterizes bisimulation in terms of equivalence relation
whereas the definition 2.2 in [2] characterizes bisimulation in terms of fixed
point theory. Let Rrst be the reflexive, symmteric and transitive closure eof
R and REL be the lattice of binary relations without subset ordering. REL
is closed because the greatest lower bound of any class C of binary relations
can be obtained by taking the intersection of the sets in C and the least upper
bound can be obtained by taking the intersection of all the upper bounds. The
definition of bisimulation is as follows:

Definition 22. Define F : REL→ REL by

sF(R)s
′

=⇒ ∀a ∈ A, ras = ra
s′

and ∀X ∈ Σ(Rrst), P
a
s (X) = P a

s′
(X)

The greatest fixed point is bisimulation.

The function F is is monotonic because the partial order of REL is the subset
ordering. Therefore, Theorem 2.1 guarantees the existence of the greatest fixed
point, the bisimulation.
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2.5 Metric Space, Open Sets, Closed Sets, Convergence
and Continuity

The motivation to study metric spaces is to generalize the notion of continuity
and convergence in Rn to arbitrary spaces. The definitions of continuity and
convergence rely on a notion of distance and if we were to generalize the defi-
nition of convergence and continuity, then we need to generalize the notion of
distance to the arbitrary spaces. The desired properties of the distance function
are enforced in the definition of metric as given below.

Definition 23. Let X be a non-empty set. A metric on X is a real function d
of ordered pairs of elements of X which satisfies:

(i) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y (non-negativity)

(ii) d(x, y) = d(y, x) (symmetry)

(iii) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Triangle inequality intuitively means that shortest path from x to y must not
include visiting any point that is not the straight line from x to y. If d(x, y) = 0
does not imply x = y but all other properties of the metric holds, then d is
called a semi-metric.

Definition 24. A metric space is a non-empty set X endowed with a metric d.

Every non-empty set induces a metric space with the metric being d(x, y) = 0
if x = y and 1 otherwise. One could also generalize the definition of =, for
example as done by bisimulation. Let us denote the distance induced on the
non-empty state space S of an MDP with = being the bisimulation as 16∼.

Definition 25. Let X be a metric space with metric d. If x0 ∈ X and r ∈ R+

the open sphere Sr(x0) with center x0 and radius r is the subset of X defined by

Sr(x0) = {x : d(x, x0) < r}

An open sphere is non-empty since it always contains its center.

Definition 26. A subset G of a metric space X is called an open set if for every
x ∈ G, there exists an open sphere Sr(x) centered on x and contained entirely
in G.

Any set G is open or not only in the context of a universal set X and is not
intrinsic to the set G itself. For example [0, 1] is not a open set in R but [0, 1]
is closed with respect to [0, 1]. The implication of this is that the full set X is
open and trivially an empty set is open.

Theorem 1. In any metric space X, each open sphere Sr(x0) is an open set.

For any x ∈ Sr(x0), Sr−d(x,x0)(x) is an open sphere contained entirely in
Sr(x0). Therefore, Sr(x0) is an open set.

Theorem 2. Let X be a metric space. A subset G of X is open ⇐⇒ it is a
union of open spheres.
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The proof of =⇒ can be seen as follows: a set X is open implies that for
each x ∈ X∃ a open sphere centered on x and contained in X and the union of
all such open spheres is X. The proof of ⇐= is seen using Theorem 1.

Theorem 3. Let X be a metric space. Then

(i) arbitrary union of open sets in X is open

(ii) finite intersection of open sets in X is open

The proof of (1) involves decomposing each open set as a union of open
spheres and using Theorem 2. For the proof (2), for each x in the intersection,
there exists a open sphere (since we are taking intersections of open sets) and
hence the intersection is open.

In order to see why the restriction of finite intersections is required, let us
consider the following case. Q is countable and hence it can be listed. Let Qi
be the ith rational and Ki be (−∞, Qi)∪ (Qi,+∞). Then, K = ∩iKi is R−Q,
the set of irrationals, which is not open.

Definition 27. Let X be a metric space with metric d and A ⊂ X. A point
x ∈ X is called a limit point of A if each open sphere centered on x contains at
least one point in A other than x itself.

A useful characterization of the limit point in terms of converging sequences
will be given later.

Definition 28. A subset F of a metric space X is a closed set if it contains
each of its limit points.

From the definition, it can be seen that a set is closed or not only in the
context of some superset and is not intrinsic to the set itself. Also, the full set
and the empty set are closed.

Theorem 4. Let X be a metric space. A subset F is closed ⇐⇒ F
′

is open.

To see =⇒ , we will assume F
′

is not open and show it leads to a contra-
diction. Since F

′
is not open, there exists a x ∈ F ′

s.t there does not exist a
open sphere centered on x contained entirely in F

′
. This implies that each open

sphere centered on x contains a point in F . Therefore, x is a limit point of F
and x 6∈ F . Since F is closed by assumption, it is a contradiction and F

′
is

open.
To see ⇐= , observe that a limit point of F must contain at least one point

in F different from itself for every open sphere centered on it. Therefore, it
cannot be in F

′
and hence F is closed.

Definition 29. Let X be a metric space with metric d and let

{xn} = {x1, x2, · · ·xn, · · · }

be a sequence of points in X. {xn} is convergent if ∃x ∈ X s.t

(i) for each ε > 0, ∃ a positive integer n0 s.t n ≥ n0 =⇒ d(xn, x) < ε or
equivalently

(ii) for each open sphere Sε(x) centered on x, ∃ a positive integer n0 s.t xn ∈
Sε(x)∀n ≥ n0
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A Cauchy sequence is a sequence {xn} that has the following property: for
each ε > 0∃ a positive integer n0 s.t m,n ≥ 0 =⇒ d(xm, xn) < ε

Every convergent sequence is a Cauchy sequence but the converse is not true.

Definition 30. A complete metric space is a metric space in which every
Cauchy sequence is convergent.

Whether a sequence is convergent or not also depends on the space in which
it lies. Hence, any metric space that is not complete can be made complete by
adjoining the ’missing’ points.

An alternate characterization of the limit point in terms of sequences is as
follows (Caution: I made up this definition):

Definition 31. Let X be a metric space. A point x ∈ X is a limit point of
A ⊂ X =⇒ ∃ a sequence in A that converges to x.

The converse is true only if the set of all points in the sequence is infinite as
shown in the following theorem:

Theorem 5. If a convergent sequence in a metric space has infinitely many
distinct points, then its limit is a limit point of the set of points of the sequence.

Finite number of points are problematic because after some n0, the values
are repeated and hence there will be no distinct points other than the convergent
point itself when n > n0 but limit point requires points other than itself to be
contained in the set under consideration for every open ball centered on the
limit point.

Definition 32. Let X be a metric space and let Y be a subspace of X. Then
Y is complete iff Y is closed.

=⇒ :Since any limit point of Y implies that a convergent sequence in Y
and since Y is complete, the limit point is in Y . ⇐= : Let {an} be a Cauchy
sequence in Y . If {an} is finite, then the limit is in Y and hence Y is complete.
Otherwise, the limit of {an} is the limit point of the set of points and since Y
is closed, is contained in Y . Therefore, Y is closed.

Definition 33. Let X and Y be metric spaces with metrics d1 and d2 and let
f be a mapping of X into Y . f is said to be continuous at a point x0 in X if
either of the following conditions hold:

(i) for each ε > 0 ∃δ > 0 s.t d1(x, x0) < δ =⇒ d2(f(x), f(x0)) < ε or

(ii) for each open sphere Sε(f(x0)) centered on f(x0)∃ an open sphere Sδ(x0)
centered on x0 s.t f(Sδ(x0)) ⊂ Sε(f(x0))

Theorem 6. The set of bounded real valued functions B(X) on a set X under
uniform norm is a complete metric space.

2.6 Lower Semi-Continuity

Definition 34. Let (X, d) be a metric space and f : X → R. The lower contour
set is corresponding to y is

L(y) = f−1((−∞, y]) = {x ∈ X|}
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Definition 35.

lim inf
n→∞

{xn} := sup{inf{xm : m ≥ n} : n ≥ 0}

Definition 36. A function f is lower semi-continuous at x0 if for ε > 0, ∃ a
neighbourhood of x0 s.t f(x) ≥ f(x0) − ε∀x ∈ U . Equivalently lim inf

x→x0

f(x) ≥
f(x0)

My intuition for lower semi-continuous function is that whenever there is a
jump discontinuity at some point x0, the function cannot jump upward at x0.

The following three statements about an lsc function are equivalent:

(i) For any y ∈ R, L(y) is closed.

(ii) For any y ∈ R, L(y)c is open.

(iii) For any x ∈ X, if the sequence {xt} in X converges to x then for any ε > 0
∃ T s.t ∀t > T , f(x) ≤ f(xt) + ε (the definition of lower semi-continuous
function).

(1) =⇒ (2) by 4. To see that (2) =⇒ (3), let’s prove using contraposi-
tion. Let {xt} in X converges to x and for some ε > 0, f(x) > f(xt) + ε i.e
f(xt) < f(x) − ε. Therefore, xt∀t ∈ L(f(x) − ε) but x 6∈ L(f(x) − ε). Hence,
L(y) is not closed and L(y)c is not open which is a contradiction.

The idea of the proof is that if there can’t be any gap between f(xt) and
f(x). (3) =⇒ (1): Let limn→∞xn = x be a convergent sequence and let
xi ∈ L(y) for some y ∈ R. By (3), we have f(x) ≤ f(xt) + ε. Since, xi ∈ L(y),
xi < y =⇒ f(x) ≤ y + ε =⇒ f(x) ≤ y =⇒ x ∈ L(y) =⇒ L(y) is closed.

Now we have all the tools to understand section 2.2 of [2].M be the set of
semi-metrics which are lower semi-continuous on S ×S and uniformly bounded
endowed with a uniform norm. M is a complete lattice as explained in [2].

2.7 Optimal Transport

The motivation of topological spaces is to be able to study continuity without
requiring a metric.

Definition 37. Let X be a set. A class T of subsets of X is called a topology
on X if it satisfies the following conditions:

(i) The empty set φ and X are ∈ T

(ii) Arbitrary union of TinT is in T

(iii) Finite intersection of TinT is in T

The properties of a topology T resembles the properties of open sets. This
is because continuity can be characterized using open sets and thus the require-
ment of a metric for characterizing continuity is only through their use in open
sets. By defining a topology in this manner, we assume that there some open
sets given T with respect to which we want to characterize continuity. In fact,
TinT are called open sets.
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Definition 38. A subset A of a topological space X is dense if for every x ∈ X,
x ∈ A or x is a limit point of A. Equivalently, A is dense of if the smallest
closure of A is X.

Definition 39. A topological space is called separable if it contains a countable
dense subset.

Definition 40. Polish space is topological space that is metrizable, complete
and separable.

Definition 41. Let X,Y be Polish Spaces and µ ∈ P(X) and T : X → Y a
Borel function. The push forward measure T∗µ ∈ P(Y ) is defined by

T∗µ(A) = µ(T−1(A)) for every Borel setA ⊂ Y

µ ∈ P(X) and ν ∈ P(Y ) and c : X × Y → R be a cost function which is
non-negative and continuous. The formulation of optimal transport problem is
as follows:

minimize

∫
c(x, T (x))dµ(x) s.t T∗µ = ν

T is called the transport map. The restriction T∗µ = ν can be interpreted as
the total mass assigned to a set A ∈ Y must be equal to the cumulative mass of
points that were transferred from T−1(A) ∈ X. The cost term in the integral
considers the cost of moving all the mass in x to some T (x) (hence the term
’map’ in Transport map). This is problematic because when µ and ν do not
agree, there is no solution to the optimization problem. Hence, the case of
allowing a part of x ∈ X to be moved to y ∈ Y was introduced by Kantorovich.

Definition 42. A measure γ ∈ P(X,Y ) is an optimal plan from µ to ν if

π1
∗γ = µ

π2
∗γ = ν

The problem of finding the optimal plan then is formulated as:∫
c(x, y)dγ(x, y) s.t γ is transport plan

Definition 43. That is, the transport plan is optimal if and only if there does
not exist another transport map under which the cost is lower.

Definition 44. The dual problem of optimal transport is given as:

A plan γ is optimal iff for any n ∈ N , a permutation of σof{1, · · · , n} and
any {(xk, yk)}k=1···n ⊂ support(γ), then it holds that∑

k

c(xk, yk) ≤
∑
k

c(xk, yσ(k))

Kantorvich’s formulation of the optimal transport problem guarantees the
existence of an optimal transport plan γ. The proof is given in Thm: 4.1 in
[10] which I don’t follow.

The dual formulation of the optimal transport problem is given by:

maximize

∫
Ψ(x)dµ(x)−

∫
ψ(y)dν(y) s.t Ψ(x)− ψ(y) ≤ c(x, y)
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Definition 45. The Kantorovich distance is defined as

TK(h)(P,Q) = supf (

∫
fdµ−

∫
fdν)

where f is bounded measurable function satisfying the Lipschitz condition f(x)−
f(y) ≤ h(x, y)

I didn’t follow many of the ideas used in proofs in Optimal Transport, so I
take them for granted.

3 The Tour

Lemma 3.1 of [2] states that Kantorovich distance between two probability
distributions P and Q if 0 if and only if both P and Q have the same distribution
over Σ-measurable sets induced by the binary relation R which relates two states
s, s

′
if h(s, s

′
) = 0.

Lemma 1. Let h ∈ M. Then TK(h)(P,Q) = 0 ⇔ P (X) = Q(X),∀X ∈
Σ(Rel(h))

I did not follow the proof because of the approximation argument and argu-
ment regarding mentioning P being tight and its implications thereof.

In section 4 of [2], the upper bound α of M is set to α = B
1−c , where B is

upper bound of the reward function.
If k is a semi-metric on S × S, Rel(k) is a binary relation induced by k

i.e two states s and s
′

are related if k = 0. Rel(k) is in fact an equivalence
relation because k(s, s) = 0 =⇒ (s, s) ∈ Rel(k), k(s, s

′
) =⇒ k(s

′
, s) = 0 and

k(s, s
′
) = 0 and k(s

′
, s

′′
) =⇒ k(s, s

′′
) = 0 by triangle inequality.

Theorem 4.1: For the purpose of Theorem 4.1: Let c ∈ (0, 1). F c :M→M
is defined by

F c(s, s
′
) = maxa∈A(|ras − ras′ |+ cTk(h)(P as , P

a
s′

))

F c is monotone on M because Tk(h)(P as , P
a
s′

) is monotone with respect to h
and |ras − ra

s′
| does not depend on h. Therefore, because of Knaester-Tarski

theorem, the least fixed point dcfix of F c exists. Lemma 4.3 in [10] mentions
that P (f) is lower semi-continuous and supremum over lower semi-continuous
functions is a lower semi-continuous function and hence Tk(h)(P as , P

a
s′

) is lower
semi-continuous. Therefore, F c(h) is lower semi-continuous.

Rel(dcfix) is therefore an equivalence relation and the fact it is the largest
equivalence relation corresponding to a fixed point follows from dcfix being the
least fixed point i.e a semi-metric that assigns the least distance between between
(s, s

′
) and hence assigns 0 to as many pairs of (s, s

′
) as possible while also being

a fixed point of F c.
To see formally, we have to show that bisimulation is contained in Rel(dcfix)

and Rel(dcfix) is contained in bisimulation. When F c(h) = 0, ras = rs′a and
Tk(h)(P as , P

a
s′

) = 0 =⇒ P (X) = Q(X) ∀X in Σ(Rel(h)) by Lemma 1 i.e
for the Σ-measurable equivalence classes induced by Rel(h) both P and Q as-
signs the same probability. Therefore, Rel(F c(h)) satisfies the definition of
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bisimulation relation given in definition 14 and hence Rel(F c(h)) = F(Rel(h)).
Therefore, Rel(dcfix) = F(Rel(dcfix)) and is a fixed point and hence contained in
bisimulation. To show that bisimulation is contained in the fixed point, the idea
is to show dcfix ≤ 16∼. The motivation is that when the distance ≤ 16∼, at least
as many state pairs have 0 distance as 16∼ and Rel(16∼) =∼⊂ Rel(dcfix). Since,
F c is a contraction mapping (as shown in the following theorem), F c(16∼) ≤ 16∼.
Hence dcfix ≤ F c(16∼) ≤ 16∼. Thus, bisimilarity is contained in Rel(dcfix). There-
fore, Rel(dcfix) is the bisimilarity.

To assert the existence of dcfix, Banach fixed point theorem is used. Banach
fixed point theorem asserts that existence of the fixed point of a function f in
a complete metric space X whenever f is a contraction.

Theorem 7. (Banach fixed point theorem)Let (X, d) be a complete metric space
and T : X → X be a contraction mapping i.e for some c ∈ (0, 1)

d(Tx, Tx
′
) ≤ cd(x, x

′
)

∀x, x′ ∈ X. Then,

(i) T has a unique fixed point x∗ and

(ii) for any x0 ∈ X, d(x∗, Tn(x0)) ≤ cn

1−cd(T (x0), x0) i.e limn→+∞T
n(x0) =

x∗

Proposition 4.2 : To prove the existence and uniqueness of dcfix, it is suffi-

cient to show F c is a contraction mapping. Let h, h
′ ∈M and ∀ s, s′ ∈ S.

F c(h)(s, s
′
)− F c(h

′
)(s, s

′
) = maxa∈A(|ras − ras′ |+ cTk(h)(P as , P

a
s′

))−

maxa∈A(|ras − ras′ |+ cTk(h
′
)(P as , P

a
s′

))

≤ maxa∈A(|ras − ras′ |+ cTk(h)(P as , P
a
s′

)−

|ras − ras′ | − cTk(h
′
)(P as , P

a
s′

))

= maxa∈A(cTk(h)(P as , P
a
s′

)− cTk(h
′
)(P as , P

a
s′

))

= maxa∈A(cTk(h− h
′
+ h

′
)(P as , P

a
s′

)− cTk(h
′
)(P as , P

a
s′

))

(In the paper above step has an inequality but I don’t see why)

≤ maxa∈A(cTk(||h− h
′
||+ h

′
)(P as , P

a
s′

)− cTk(h
′
)(P as , P

a
s′

))

(since ||.|| is the sup norm and hence (h− h
′
) ≤ ||h− h

′
||∀(s, s

′
))

≤ maxa∈A(c||h− h
′
||+ cTk(h

′
)(P as , P

a
s′

)− cTk(h
′
)(P as , P

a
s′

))

= maxa∈A(c||h− h
′
||)

= c||h− h
′
||

Therefore, F c is a contraction mapping. Hence, F c has a unique fixed point.
Lower Semi-continuity of 16∼: Let 16∼ be a semimetric as defined in 2.5.
To see why this is a lower semi-continuous function, let us prove L(y) wrt 16∼
is closed ∀y ∈ R and then by Definition 36 16∼ is lower semi-continuous. y can
take values 0 or 1 and when y = 1, L(y) = S × S and hence it is closed. So
it is sufficient to prove L(y) is closed when y = 0. Since F c(h) is lower semi-
continuous, L(y) corresponding to y = 0 is closed. Since L(y) for y = 0 for
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16∼ = F c(h) (the bisimilarity), L(y) for y = 0 corresponding to 16∼ is closed and
hence 16∼ is lower semi-continuous.

Claim:Bisimulation is a closed subset of S × S
Since, 16∼ is lower semi-continuous, F c(h) is a closed set ∀ y ∈ R. Since bisim-

ulation corresponds to y = 0, bisimulation is a closed subset of S × S.

Proposition 4.3: provides a bound on bisimulation metric when the param-
eters of the MDP have been perturbed. The algebra is straightforward and in
the last step we notice that

d1(x, y)− d2(x, y) ≤ 2maxa(||ra1 − ra2 ||) + c||d1 − d2||+ 2c
B

1− c
supa,sdTV (P a1,s, P

a
2,s)

holds ∀x, y ∈ S. Therefore, the following inequality also holds

||d1 − d2|| ≤ 2maxa(||ra1 − ra2 ||) + c||d1 − d2||+ 2c
B

1− c
supa,sdTV (P a1,s, P

a
2,s)

and thus by rearranging the terms, we get the proposition.

Theorem 5.1 Value function Bounds:
To Prove: |V ∗(s)− V ∗(s′)| ≤ dcfix(s, s

′
)

Proof:
Let h ∈M and V 0 be initialized to all zeros.
base case(i=1):

V 1(s)− V 1(s
′
) = maxa(ras + γP as (V 0))−maxa(ra

s′
+ γP a

s′
(V 0))

≤ maxa(|ras − ras′ |+ γ(P as (V 0)− P a
s′

(V 0)))

≤ maxa(|ras − ras′ |+ γsupf (P as (f)− P a
s′

(f))) (f s.t f(x)− f(y) ≤ h(x, y))

= maxa(|ras − ras′ |+ γTk(h)(P as , P
a
s′

))

= F c(h)(s, s′)

Since this hold ∀s, s′ , we see that |V 1(s) − V 1(s
′
)| ≤ F c(h)(s, s′). induction

from i to i+ 1:
Let us assume that ∀s, s′ , we see that |V i(s) − V i(s

′
)| ≤ (F c)i(h)(s, s′) and

prove that |V i+1(s)− V i+1(s
′
)| ≤ (F c)i+1(h)(s, s′).

V i+1(s)− V i+1(s
′
) = maxa(ras + γP as (V i))−maxa(ra

s′
+ γP a

s′
(V i))

≤ maxa(|ras − ras′ |+ γ(P as (V i)− P a
s′

(V i)))

(By induction hypothesis |V i(s)− V i(s
′
)| ≤ (F c)i(h)(s, s′) and hence)

≤ maxa(|ras − ras′ |+ γsupf (P as (f)− P a
s′

(f))) (f s.t f(x)− f(y) ≤ (F c)i(x, y))

= maxa(|ras − ras′ |+ γTk((F c)i)(P as , P
a
s′

))

= F c((F c)i)(s, s′)

= (F c)i+1(s, s′)

Therefore, |V i+1(s) − V i+1(s
′
)| ≤ (F c)i+1(s, s′). Since each V i is continuous,

by taking limit i→∞, we have |V ∗(s)−V ∗(s′)| ≤ dcfix(s, s′). The requirement

γ ≤ c is to ensure that the semimetrics (F c)i are bounded by B
1−c .
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4 Conclusion

We have presented the tools required to understand [2] and explained the ar-
guments presented. The tools from analysis were easy to pickup and form an
intuition whereas measure theory and optimal transport were used mechanically.
In the future, we would like to work on filling the gaps to learn both these areas.
The drawbacks of the pseudometric introduced in [2] are the requirement of fi-
nite action space and not considering systems that evolve similarly but under
different actions. The methods that take into account the equivalence among
actions are studied in [?] and [?] which are possible directions of study for us.
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